1. 新版tensorflow在训练过程中保存模型为ckpt格式时会产生三个文件,分别是一个data文件,一个index文件,以及保存图流程结构的meta文件:
2. 如果需要把ckpt文件用于测试代码,建议固化模型参数,即转换为pb模型。
转换代码网上都有,随便找了个可用的,如下:
def freeze_graph(input_checkpoint,output_graph):
'''
:param input_checkpoint:
:param output_graph: PB模型保存路径
:return:
'''
# checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
# input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径
# 指定输出的节点名称,该节点名称必须是原模型中存在的节点
output_node_names = "InceptionV3/Logits/SpatialSqueeze"
saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)
graph = tf.get_default_graph() # 获得默认的图
input_graph_def = graph.as_graph_def() # 返回一个序列化的图代表当前的图
with tf.Session() as sess:
saver.restore(sess, input_checkpoint) #恢复图并得到数据
output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
sess=sess,
input_graph_def=input_graph_def,# 等于:sess.graph_def
output_node_names=output_node_names.split(","))# 如果有多个输出节点,以逗号隔开
with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
f.write(output_graph_def.SerializeToString()) #序列化输出
print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点
# for op in graph.get_operations():
# print(op.name, op.values())
一开始转换的时候出现了转换出pb模型内只有一个tensor节点,经排查原因为代码段内的
output_node_names
没有设置正确,因此转换代码无法读到.meta文件的整个模型流程。
3. 总结:整个代码的核心就是要找准输出节点,建议可用tensorboard或者netron来查看模型的graph。