BZOJ 3036 绿豆蛙的归宿 期望动规

Description

随着新版百度空间的下线,Blog宠物绿豆蛙完成了它的使命,去寻找它新的归宿。

给出一个有向无环的连通图,起点为1终点为N,每条边都有一个长度。绿豆蛙从起点出发,走向终点。
到达每一个顶点时,如果有K条离开该点的道路,绿豆蛙可以选择任意一条道路离开该点,并且走向每条路的概率为 1/K 。
现在绿豆蛙想知道,从起点走到终点的所经过的路径总长度期望是多少?

Input

第一行: 两个整数 N M,代表图中有N个点、M条边
第二行到第 1+M 行: 每行3个整数 a b c,代表从a到b有一条长度为c的有向边

Output


从起点到终点路径总长度的期望值,四舍五入保留两位小数。


Sample Input

4 4
1 2 1
1 3 2
2 3 3
3 4 4

Sample Output

7.00

HINT



对于100%的数据  N<=100000,M<=2*N






第一道期望题……
感觉对于“期望”这个概念的理解还有待提升。



#include<bits/stdc++.h>
using namespace std;
const int 
	N=100005;
int n,m,Ecnt,son[N];
bool vis[N];
double dp[N];
struct Edge{
	int next,to,val;
}E[N<<1];int head[N];
void add(int u,int v,int w){
	E[++Ecnt].next=head[u];
	E[Ecnt].to=v;
	E[Ecnt].val=w;
	head[u]=Ecnt;
	son[u]++;
}
void dfs(int u){
	vis[u]=1,dp[u]=0.0;
	for (int i=head[u];i;i=E[i].next){
		int v=E[i].to;
		if (!vis[v]) dfs(v);
		dp[u]+=dp[v]+E[i].val;
	}
	if (son[u]) dp[u]/=(double)son[u];
}
int main(){
	scanf("%d%d",&n,&m);
	int x,y,z;
	for (int i=1;i<=m;i++)
		scanf("%d%d%d",&x,&y,&z),add(x,y,z);
	dfs(1);
	printf("%.2lf\n",dp[1]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值