bzoj 2705 [SDOI2012]Longge的问题 欧拉函数

Description

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。
Input

一个整数,为N。
Output

一个整数,为所求的答案。
Sample Input

6

Sample Output

15

HINT

【数据范围】

对于60%的数据,0 < N<=2^16。

对于100%的数据,0 < N<=2^32。


传送门
刷水有益身心~
很容易想到枚举某一个数字作为gcd(i,n),
假设这个数字为x
满足 gcd(i,n)=x 的对数为y,那么贡献就是x*y。
那么我们知道x一定是n的约数,所以枚举x的过程只用枚举n的约数就好了,
时间复杂度O( n )
那么怎么求出y呢?
看到满足 gcd(i,n)=x 的所有i,一定满足:

i%x=0n%x=0gcd(i/x,n/x)=1

……所以很明显啦,和n/x的所有数,再乘上x,和n的gcd一定是x。。
那么求个欧拉函数就好啦。。
水题水题,多说无益= v =

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int 
    MAX=(1<<16);
int pcnt;
ll prime[MAX/10];
bool notprime[MAX];
void Get_Prime(){
    notprime[1]=1,pcnt=0;
    for (int i=2;i<MAX;i++){
        if (!notprime[i]) prime[++pcnt]=i;
        for (int j=1;j<=pcnt;j++){
            if (prime[j]*i>=MAX) break;
            notprime[prime[j]*i]=1;
            if (!(i%prime[j])) break;
        }
    }
}
ll phi(ll x){
    int j=1;ll t1=x;
    while (j<=pcnt && x!=1){
        if (!(x%prime[j])){
            t1=t1/prime[j]*(prime[j]-1);
            while (!(x%prime[j])) x/=prime[j];
        }
        j++;
    }
    if (x!=1) t1=t1/x*(x-1);
    return t1;
}
int main(){
    Get_Prime();
    ll n;
    scanf("%lld",&n);
    ll tmp=sqrt(n),ans=0LL;
    for (ll i=1LL;i<=tmp;i++)
        if (!(n%i)){
            ans+=i*phi(n/i);
            if (n/i!=i) ans+=(n/i)*phi(i);
        }
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值