Description
ftiasch 有 N 个物品, 体积分别是 W1, W2, …, WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” – 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。
Input
第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, …, WN, 物品的体积。
Output
一个 N × M 的矩阵, Count(i, x)的末位数字。
Sample Input
3 2
1 1 2
Sample Output
11
11
21
HINT
如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。
传送门
……
因为一个物品体积为w,那么对于一般的背包方案,f[j]+=f[j-w[i]]
那去掉一个物品的时候,令g[j]为体积为j的方案数。
对于 < w[i]的j,g[j]=f[j]
而对于>=w[i]的j,g[j]=f[j]-g[j-w[i]],
(也就是总的方案减掉(j-w[i])体积不用w[i]的方案数,
用了w[i]就变成体积j了而不合法)
答案mod 10即可。
#include<bits/stdc++.h>
using namespace std;
int n,m,a[2005],f[2005],g[2005];
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
f[0]=1;
for (int i=1;i<=n;i++)
for (int j=m;j>=a[i];j--)
(f[j]+=f[j-a[i]])%=10;
for (int i=1;i<=n;i++){
for (int j=0;j<a[i];j++) g[j]=f[j];
for (int j=a[i];j<=m;j++)
g[j]=(f[j]-g[j-a[i]]+10)%10;
for (int j=1;j<=m;j++) printf("%d",g[j]);
putchar('\n');
}
return 0;
}