bzoj 2287 【POJ Challenge】消失之物 背包动规

Description

ftiasch 有 N 个物品, 体积分别是 W1, W2, …, WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” – 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1, W2, …, WN, 物品的体积。

Output

一个 N × M 的矩阵, Count(i, x)的末位数字。

Sample Input

3 2

1 1 2

Sample Output

11

11

21

HINT

如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。


传送门
……
因为一个物品体积为w,那么对于一般的背包方案,f[j]+=f[j-w[i]]
那去掉一个物品的时候,令g[j]为体积为j的方案数。
对于 < w[i]的j,g[j]=f[j]
而对于>=w[i]的j,g[j]=f[j]-g[j-w[i]],
(也就是总的方案减掉(j-w[i])体积不用w[i]的方案数,
用了w[i]就变成体积j了而不合法)
答案mod 10即可。

#include<bits/stdc++.h>
using namespace std;
int n,m,a[2005],f[2005],g[2005];
int main(){
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++) scanf("%d",&a[i]);
    f[0]=1;
    for (int i=1;i<=n;i++)
        for (int j=m;j>=a[i];j--)
            (f[j]+=f[j-a[i]])%=10;
    for (int i=1;i<=n;i++){
        for (int j=0;j<a[i];j++) g[j]=f[j];
        for (int j=a[i];j<=m;j++)
            g[j]=(f[j]-g[j-a[i]]+10)%10;
        for (int j=1;j<=m;j++) printf("%d",g[j]);
        putchar('\n');
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值