如何爬取B站视频的封面图片

缘起

周末在B站刷视频的时候,红灯区…啊呸!钢琴区一个up的视频突然拽住了我的眼球,一连翻看了她的几个视频之后,我发现这个up每次的封面确实有点东西!
在这里插入图片描述
于是突然来了兴致,想通过自己为所欲为的技术手段,实现一波儿封面批量自提。

简单调查了一番,发现这东西用Pyhton爬虫搞,不仅难度不大而且很有搞头!于是很快便开始上手缕逻辑。

实施

第一次接触爬虫,就想要那种短平快的东西,所以我把逻辑抽离的非常宏观:

  1. 先知道目标图片的网址是什么?
  2. 通过代码访问这个网址,拿到目标页面的全部代码。
  3. 解析这个代码,找到图片所在区域ID
  4. 遍历区域内所有的内容,找到每一个img标签,获取它的src属性就是图片的地址
  5. 通过代码+地址下载对应的图片保存到本地
  6. 大功告成

上面的这几步骤基本都能看懂,有几个步骤需要一些技术支持,分别对应是:

  1. 就是你访问的地址
  2. urllib2或者requests
  3. BeautifulSoup4
  4. 浏览器的F12+选择器找一下
  5. urllib

我把主逻辑理顺后,写成代码也很简单(这段代码不能用哈,不用看太细):

# -*- coding:utf-8 -*-
import requests
from bs4 import BeautifulSoup

#指定要爬取的网站url
x = 0
def get_images(url):
    headers = {'Usar-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36'}
    req = urllib2.Request(url,headers=headers)# 用url地址创建一个request对象
    page = urllib2.urlopen(req,timeout=20)#打开网址
    contents = page.read() # 获取源码

    res = requests.get(url,headers=headers,timeout=(5,5))
    print (res.content)
    soup = BeautifulSoup(contents,'html.parser') # 创建一个soup对象
    cover_imgs = soup.find_all('img')# 找到img标签  find只找一次,find_all找到所有
    for cover_img in cover_img:# 遍历list,选取属性
        link = cover_img.get('src');#获取src图片路径
        link.replace(".webp",".png")
        print (link);

        #下载的文件,取名字
        global x
        urllib. urlretrieve(link,'image\%s.png'%x)
        print ("Downloading image No.{}".format(x));
        x += 1;

for page in range(1,10):
    url = 'https://space.bilibili.com/72956117/video?tid=0&page={}&keyword=&order=pubdate'.format(page)
    get_images(url)

阻碍

这段代码的主逻辑是通的,思路也是完全按照上面的123456来的,但是就当我已经兴奋地搓搓小手准备爬图的时候,却遇到了很大的障碍:

res.content拿到的并不是完整页面的代码

拿到的只是一个主的html加一堆js文件的加载路径,并没有拿到包含着图片标签的代码。

也就是说,我通过浏览器访问这个网址看到页面的时候,其实已经进行过多次请求响应了

而我通过代码单独请求这个网址,只拿到了单次请求主页的内容,所以这么搞并不能拿到指定的内容。

在这个页面上通过右键查看源代码确认了一下。确实,这个页面的源代码就是这个样子滴:
那这就比较难搞了,我该如何获知浏览器发出的其他请求并模拟出来,然后通过返回拿到我想要的东西呢?

要知道一个优秀的爬虫大佬,那都是web前后端玩儿贼6的大佬,我一个搞C++客户端的,对这些是一窍不通啊?!一时间让我有点一筹莫展。

不过怎么说也是个大厂的网站,让我一没摸过爬虫的人上来说爬就爬了是不是有点太low了。

再想想办法,只能硬着头皮看请求了。

柳暗花明

这是我访问页面的get请求:
在这里插入图片描述
后面跟的请求好多,我也不是很懂,只能是凭感觉找可疑的请求查验。

感觉上它应该是访问后台的某个api接口,反馈回来的是一堆json数据,然后前端根据数据给它渲染成了我们看到的亚子。

功夫不负有心人,就这么感觉了几下还真让我发现了一个可疑的:
在这里插入图片描述
看见那个api.开头我就觉得有门,复制到浏览器试了一下,果然!
在这里插入图片描述
把这里面pic的地址扔到浏览器里一看!我的妈直接get到了1768*1080的原图(在浏览器里F12查找元素能看到的,只有320*240的webp格式了)!比我电脑屏幕分辨率都高,兴奋的我大腿都拍肿了!
在这里插入图片描述这个突破口有了,我们回到技术上来!

现在直接从api拿到的是json数据,所以现在思路大改!

根本不需要解析页面,更不需要什么bs4,只需要访问api接口,从数据里提取出图片地址,下载图片就完了。

不仅思路更加简短,难度也陡然下降。

比刚才的代码还要简单,一共只有20行不到(这个是真的可以跑,注意身体~):

import requests
import json
import urllib

x = 0
def get_images(url):
    headers = {'Usar-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36'}
    res = requests.get(url,headers=headers,timeout=(5,5))
    for video in res.json()['data']['list']['vlist']:
        global x
        urllib.request.urlretrieve("http:"+video['pic'],'image\%s.jpg'%x)
        print ("Downloading image No.{}".format(x));
        x += 1
for page in range(1,10):
    url = 'https://api.bilibili.com/x/space/arc/search?mid=72956117&ps=30&tid=0&pn={}&keyword=&order=pubdate&jsonp=jsonp'.format(page)
    get_images(url)

装上对应的库后直接python3就可以跑,执行之前要在同级目录创建一个名为image的文件夹,否则没路径会报错。

举一反三

有了这个技术手段,其他up主的封面原图,也不是问题。你需要做的只是:

  • 打开这个up的个人主页点投稿
  • 按F12点到network页面
  • 刷新页面,找到大量的webp图片请求然后开始往上找。找到一个search?xxxx的请求
  • 点击就能看到Request url 项指定的真实api地址
  • 把这个地址替换掉上面代码里的url,执行脚本就可以下图片了
  • 爬取的页数根据需要自己调整range。

爬取的结果,你可以没人的时候尽情欣赏:
在这里插入图片描述
这个爬虫还是很简单的,几乎可是说是入门都没有的水平了。

真的要把爬虫这门技术发展成可以挣钱吃饭的手艺,那难度就不是这个量级了,想要有所精进的同学,我个人非常推荐去看老陈的博客(https://www.cnblogs.com/c-x-a)和崔大的文章(https://cuiqingcai.com/)。
不吹不黑他们的文章凭借扎实的技术和清晰地思维逻辑,往公安局送了不少搞爬虫的人(逃…

后记

最后关于这个UP主,大家爬爬图片就好,我本意是不想给她带哪怕一个人头的流量的。

她早年的视频封面风格还是这样的:
在这里插入图片描述
也可以看得出来还是挺正经的,后来发觉擦边球涨粉的套路后就一发不可收拾了

另外主要不想带流量的原因是我在了解过程中也发现:这个UP似乎在外网发表过一些台独言论,因此每次发视频评论弹幕都比视频热闹。而这UP从来都视而不见,建议B站能够严查!

八爪鱼是一种聪明灵活的海洋动物,它们具有很强的适应性和生存能力。如果八爪鱼被训练成能够爬取B站视频评论的工具,那它可能会在以下几个方面发挥作用。 首先,八爪鱼拥有多栖生活的特点,可以自如地在水中移动,并利用它们的触手觅食。当八爪鱼被训练成工具后,它们可以通过触手上的吸盘轻松地爬取B站视频评论中的文字。这样的能力可以极大地方便人们获取评论信息,不需要人工的干预和大量的时间成本。 其次,八爪鱼拥有高度灵活和精准的触觉能力。它们的触手上有上百个感应器官,可以感知到周围环境的细微变化。如果八爪鱼被训练成工具,通过它们的触觉能力,可以准确地识别并获取B站视频评论中的关键信息,比如用户对视频的评价、观点等。这将极大地帮助人们快速了解用户的反馈和评论,有助于改进和优化视频内容。 再次,八爪鱼拥有出色的智力和学习能力。它们能够记住复杂的任务和环境,并根据经验进行判断和决策。如果八爪鱼被训练成工具,它们可以根据预设的指令和规则,在B站视频评论中进行过滤和筛选,整理出最具有代表性和有用的评论内容,为用户提供一个更高效和便捷的浏览体验。 综上所述,若八爪鱼拥有能力爬取B站视频评论,它们的多栖、灵巧的触觉以及良好的学习能力将为人们提供方便快捷的评论信息获取方式,准确地识别和整理评论内容,从而提升用户对B站视频评论的了解和体验。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值