整数与算法设计基础——整数的基本知识

1.整数与整除算法

1)整除的概念与性质

假设a和b是任意给定的两个整数且a≠0,若存在整数q满足b=a*q,则称a能整除b,或b能被a整除,记为a|b,此时也称a是b的因子或b是a的倍数,反之则相反。

对任意给定的整数a,它至少能够被±1或±a整除,这四个因子也被称为a的平凡因子,a的其他因子被称为非平凡因子

2)素数(质数)与合数

对于任意给定的非零整数a,若a≠±1且没有非平凡因子(不存在除±1和±a之外的因子),则称a为素数或质数,否则就称a为合数

3)判断素数的方法

①试除法,用各个素数从小到大依次去除,如果到某个素数正好整除,则认为这个数非素数 问题:为什么选择用素数去除就可以判定是否为素数?

回答:如果这个数是偶数那么很显然会被2除,所以将偶数除去,而对于不属于素数的那部分奇数而言,这些奇数可分解为多个奇数相乘,进一步继续分解到不能再分解的地步,就是奇数由多个素数相乘得出,故只需判断比它小的素数能否整除它即可。(所有的正整数通过因式分解都能得到一串素数相乘的等式)

例题:判断137和157是否为素数 解:由于根号137和根号157均小于13,故只需要考察小于13的素数是否能整除它们即可 即考察2 3 5
7 11是否能整除它们,最后证得它们均为素数

4)最大公因数与最小公倍数

由于自然数1可整出任意整数,故对任意两个整数而言,它们的公因数总是存在的,但通常会考察它们最大的公因数,表示为gcd(a,b);同样两个整数相乘就是它们的公倍数,通常也会考察最小公倍数,表示为lcm(a,b)。
规定gcd(0,0)=0

5)带余除法

形如16÷5=3…1的形式
假设a和b是任意整数,若有b=a*q+r, 0≤r<|a|,则必有gcd(b,a)=gcd(a,r)

证明:假设k是a与b的任一公因数,也就是说k|a,k|b,由整除运算的基本性质可知k|(b-a*q),即k|r,故k也为a和r的公因数,同理得到a和r的任一因数也是a和b的公因数,故gcd(b,a)=gcd(a,r)

6)辗转相除法

假设a和b是任意整数,则必存在两个整数k1和k2满足gcd(b,a)=k1b+k2a

记b=r0,a=r1,根据辗转相除法有r(i)=r(i+1)*q(i+2)+r(i+2),直到r(n-1)=r(n)*q(n+1),其中gcd(b,a)=r(n)
在这里插入图片描述
例题:用辗转相除法求252与198的最大公因数,并把其表示成252与198的线性组合
解:252=198 * 1+54;198=54 * 3+36;54=36 * 1+18;36=18 * 2
故gcd(252,198)=18
18=54-36 * 1=54-(198-54 * 3)=54 * 4-198=(252-198 * 1) * 4-198=252 * 4-198 * 5

借助上面的例题来解释一下辗转相除是如何求出最大公因数的。252=198 * 1+54;198=54 * 3+36;54=36 * 1+18;36=18 * 2 正是由上述这几个等式得出了gcd(252,198)=gcd(198,54)=gcd(54,36)=gcd(36,18)=18(带余除法得出的定理

7)算数基本定理

对任一大于1的正整数a均可唯一表示成a=p1p2…pm的形式或a=p1的a1次方*p2的a2次方…

下面来证明此式的唯一性:
假设pi(1≤i≤k)与qj(1≤j≤l)都是素数(偶数和奇数因式分解到最后都可化成多个素数相乘)(p1≤p2≤p3…≤pk ,q1≤q2≤q3≤…≤ql)
且a=p1p2p3…pk=q1q2q3…ql
由素数的性质可知必有某个qj使pi|qj存在,而它们又都是素数,故说明pi=qj,同理可证其他数,故可知p和q是一一对应的

8)素幂分解式
在这里插入图片描述
在这里插入图片描述

9)查找素数的算法——爱氏筛法

步骤如下:
①把不超过N的正整数从小到大排序成一个队列
②从队列中划去1和一切不超过根号N的素数的所有倍数(2倍、3倍…等)
③剩下的数即为素数
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值