整数与算法设计基础——同余算法及其运用

1)同余关系

定义:对给定的正整数m,所有整数根据他们除以m所得余数是否相同,可分为m类(余数相同分为一类)

假设m是任意正整数,对两个整数a和b,它们除以m以后得到的余数记为a(mod m)和b(mod m),如果两个余数相等,则有a(mod m)=b(mod m),称a与b具有模m同余关系(a与b模m同余),记为a 三 b(mod m)或b 三 a(mod m)

2)同余关系判定

定理:假设m是任一正整数,任意整数a和b具有模m同余关系,当且仅当m能够整除a-b

证明方法1:假设a与b模m同余,那么a(mod m)=b(mod m) 即存在正整数k1和k2使
a-k1m=b-k2m,那么a-b=(k1-k2)m;反之,如果m能够整除a-b,那么(a-b)=0(mod m),即a-b=mk(k为某个整数),a-mk1=b-m*k2(其中k1-k2=k),故a与b模m同余

证明方法2 在这里插入图片描述

3)同余关系的保加性和保乘性

定理: 设m是任一正整数,若a与b模m同余,c与d模m同余(a b c d均为整数),那么它们的和与积也同余。 即a三b(mod m),c三b(mod m),那么a+c三(b+d)(mod m), ac三bd(mod m)

证明: 由于a三b(mod m),c三d(mod
m),所以存在整数k1和k2,使a=b+k1m,c=d+k2m,故a+c=b+d+(k1+k2)m,同理得ac=bd+()m

定理:若ac与bc模m同余,且c与m互素,则有a与b模m同余(一般的除法不满足这种关系)

证明1:由于ac与bc模m同余,所以存在某整数k使ac=bc+km,那么(a-b)c=km,由于c与m互素,故c为k的因子,那么a-b=k1m(其中k1=k/c),故a与b模m同余

加粗样式明2: 在这里插入图片描述

4)同余类
在这里插入图片描述

剩余类:对m求余,余数相同的数放在一个类中,组成了剩余类

在这里插入图片描述

5)同余类的加法与乘法

假设m是任一正整数,对任意的整数a和b,定义[a]m+[b]m=[a+b]m ,[a]m*[b]m=[a*b]m

在这里插入图片描述
在这里插入图片描述

5)完全剩余系
在这里插入图片描述

从m个同余类中各取出一个数,组成m元集合,此集合为完全剩余系;称m元有限集合{0,1,2,3…m-1}为最小非负完全剩余系

6)模m简化同余类
在这里插入图片描述

模m简化同余类/模m简化剩余类:此剩余类中存在一个整数与m互素
简化剩余系/简化系:从m各简化剩余类中取出一个整数组成的集合
欧拉函数:表示模m简化剩余类的数目(不超过m且与m互素的正整数个数)

7)欧拉函数

对于正整数n而言,欧拉函数为小于或等于n的数中与n互质的数的数目,如8的欧拉函数为4(因为1,3,5,7与8互质)
在这里插入图片描述
在这里插入图片描述

8)同余方程
在这里插入图片描述
使ax与b模m同余的解x为该同余方程的解

8)同余方程解存在的充要条件
在这里插入图片描述

证明:模余方程ax三b(mod m)存在解的充要条件是存在整数y,使ax=b+my,即ax-my=b 假设d=gcd(a,m),那么(ax-my)/d=b/d,由于d是a和m的公因数,故除去后左边为整数,如果b/d不为0则说明右边为小数,那么自然的,就不会存在这个y和x;反之也一样
如何证明解的个数为(a,m)个???
在这里插入图片描述
在这里插入图片描述

9)模m逆

m为任一给定正整数,a是任一与m互素的整数,满足ax与1模m同余的最小正整数解称为整数a的模m逆

在这里插入图片描述
在这里插入图片描述

79x 三 229(mod 31)

79x=62x+x;而31正好整除62
x 三 22
9(mod 31)
在这里插入图片描述

10)解同余方程组——中国余数定理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值