warmUpExercise.m
A = eye(5);
computeCost.m / computeCostMulti.m
distance = X * theta - y;
t = sum(distance .^ 2);
m = 2 * m;
J = t / m;
gradientDescent.m / gradientDescentMulti.m
delta = X' * (X * theta - y); %the derivative part
delta = delta * alpha / m;theta = theta - delta;
featureNormalize.m
mu=(mean(X));
sigma = (std(X));
X_norm= (X - mu) ./ sigma;
normalEqn.m
theta = pinv(X' * X) * X' * y; % We tack this measure rather than pinv(X) * y in order to prevent the possiblity that X is non-invertible
ex1_multi.m
price = [1 (1650-mu(1))/sigma(1) (3-mu(2))/sigma(2)] * theta; %Gradient Descent
price = [1 1650 3] * theta; % Normal Equation