自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(29)
  • 收藏
  • 关注

原创 2020校招cv算法岗面试经历总结

1.商汤一面 1.25 主要是聊得项目,云从科技小目标人脸的,代码题为nms二面 2.15 主要是代码 代码题 sgd拟合一条曲线wx+b,主要考察链式求导法则。非递减旋转数组求m的最小索引。需要递归挂的原因:未知,运气太差,就当攒人品吧...

2019-08-18 20:04:37 852

原创 解决目标检测中密集遮挡问题——Repulsion loss

解决目标检测中密集遮挡问题——Repulsion lossRep lossAttrRepGTRepBox之前参加了df的钢筋检测比赛,比赛中的一个难点是密集遮挡问题,为了解决这个问题,参考了之前旷视针对人群检测中密集遮挡问题而提出的Reploss,这篇论文收录于cvpr2018。我把Reploss的思路拿过来用在钢筋检测中,效果还是不错的,在这里记录一下这篇论文。在目标检测中,遮挡问题是比较常...

2019-03-29 22:07:17 9317 8

原创 常见卷积神经网络总结:Densenet

常见卷积神经网络总结DenseNet最近时间没那么紧张了,准备把之前没看的论文总结一下,DenseNetDenseNet是CVPR2017的最佳论文,可见这篇论文还是很厉害的,DenseNet主要是借鉴了Resnet的思想,采取了一种全新的网络连接方式,最近的卷积神经网络主要是从深度和宽度上进行思考的,加深宽度或者加深深度,但这篇文章另辟蹊径,采取了一种新的结构,取得了很好地效果。首先来看...

2019-03-29 20:43:28 1708

原创 堆排序的python实现

堆排序的python实现def max_heapify(heap, heapSize, root): left = 2*root+1 right = left+1 larger = root if left < heapSize and heap[larger] < heap[left]: larger = left if ri...

2019-03-25 22:52:29 331

原创 深度学习总结:常见卷积神经网络——Inception

深度学习总结:常见卷积神经网络2Inception v1Inception v2BN层Inception v3非对称卷积分解Inception v4总结  上一篇博客主要回顾了VGG和Resnet,这一篇主要回顾一下GoogLeNet系列。Inception v1Inception v1提出于2014年,和VGG是同一年,使用了Inception的结构。  首先inception v1的层...

2019-03-19 22:26:35 2468

原创 机器学习(深度学习)缓解过拟合的方法——正则化及L1L2范数详解

机器学习(深度学习)缓解过拟合的方法——正则化L1范数和L2范数L1范数L2范数过拟合的本质:模型对于噪声过于敏感,把训练样本里的噪声当做特征进行学习,以至于在测试集的表现不好,加入正则化后,当输入有轻微的改动,结果受到的影响较小。正则化的方法主要有以下几种:参数范数惩罚,比较好理解,将范数加入目标函数(损失函数),常见的有一范数,二范数数据集增强添加噪声earlystopping,...

2019-03-12 15:13:00 1092 5

原创 二叉树遍历的python实现:递归与非递归

二叉树遍历的python实现:递归与非递归先序遍历中序遍历后序遍历先序遍历class Solution: def postorderTraversal(self, root): &amp;quot;&amp;quot;&amp;quot; :type root: TreeNode :rtype: List[int] &amp;quot;&amp;quot;&amp;quot;

2019-03-07 20:37:23 444

原创 归并排序的python实现:递归与非递归

递归原理比较简单,就是有序数组的合并。def merge(a, b): c = [] i = j = 0 while i &lt; len(a) and j &lt; len(b): if a[i] &lt; b[j]: c.append(a[i]) i += 1 else: ...

2019-03-07 09:09:46 3138

原创 快速排序的python实现:递归与非递归

递归版本def quick_sort(li, start, end): if start &gt;= end: return left = start right = end mid = li[left] while left &lt; right: while left &lt; right and li[right...

2019-03-06 21:23:57 1737

原创 深度学习中常用损失函数

深度学习中常用损失函数L1损失函数和L2损失函数交叉熵损失函数其他机器学习常见损失函数损失函数是用来估量模型的预测值f(x)与真实值Y的不一致程度,它是一个非负值函数,通常用L(Y,f(x))来表示,损失函数越小,模型的鲁棒性越好。损失函数是经验风险函数的核心部分,也是结构风险函数的重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子:其中,前面的均值函数表示的是...

2019-03-06 14:10:04 20934

原创 深度学习中常见的优化方法及调参方法

深度学习中常见的优化方法基本算法随机梯度下降SGD带动量的SGDNesterov动量自适应学习率的算法AdaGradRMSPropAdam二阶近似方法牛顿法基本算法随机梯度下降SGD随机梯度下降及其变种是及其学习中应用最多的优化算法,特别是在深度学习中。SGD按照数据分布抽取m个小批量(独立同分布的)样本,通过计算它们的梯度均值,可以得到梯度的无偏估计。SGD的关键参数是学习率,在实践中...

2019-03-04 17:52:15 1610

原创 目标检测总结:Cascade RCNN

目标检测总结:Cascade RCNNIOU对目标检测的影响其他相关工作Cascade RCNN目标检测中通常用IOU来区分正例和负例,通常IOU取0.5,但通常0.5的IOU阈值会带来大量的噪声,这里的噪声指的是false positive。但是如果增加阈值的选取,检测器的性能并没有提升反而有所下降,其原因在于:1样本减少引起的过拟合,2 train和inference时的阈值不一致带来的mi...

2019-02-26 13:56:56 2245

原创 目标检测总结:Deformable Convolutional Networks

目标检测总结:Deformable Convolutional NetworksDeformable ConvolutionDeformable RoIPoolingDCN的效果  文章的出发点是几何形变和几何变化的建模一种是卷积神经网络的难点,之前常见的解决方法有两个:1运用数据增强的方法构建包含各种变化的数据集,2使用具有形变不变性的特征和算法(比如SIFT等)。但这两个方法对未知的形变无法...

2019-02-21 20:16:06 1218

原创 目标检测总结:R-FCN

目标检测总结:R-FCNRFCNposition sensitive score mapposition-sensitive roi poolingposition-sensitive regression其他细节  卷积神经网络用于图像分类已经取得了很大的成功,其精度已经超过了人眼,而用卷积层构建目标检测的卷积网络进而进行目标检测,得到的结果却和图像分类差别很大。分析原因,在于图片分类的平移不...

2019-02-20 15:21:02 453

原创 目标检测总结:focal loss 和 RetinaNet

目标检测总结:focal loss 和 RetinaNetfocal lossRetina Net  之前总结过,目前常见的目标检测算法分one-stage和two-stage两种,one-stage以Yolo系列和SSD系列为代表,two-stage以Faster-RCNN系列为代表。两种类型的目标检测算法可谓各有所长,one-stage算法计算速度快,但其精度弱于two-stage算法,而t...

2019-02-19 23:32:29 1190

原创 机器学习总结:决策树

机器学习总结:决策树ID3 C4.5CART树(分类回归树)决策树算法我们并不陌生,可以看做是if-then规则的集合,那么决策树算法的关键在于如何确定每次if的条件是最优的。ID3 C4.5信息熵是信息论里的概念,其表达式如下所示:熵表征的是事物的混乱程度,熵越大,混乱程度越大。信息增益:其表达式比较易懂,由信息熵减去减去特征A条件下D的条件熵,这也比较好理解,其实就是在A条件下...

2019-02-14 11:28:32 278

原创 人脸检测算法总结:PyramidBox

人脸检测算法总结:PyramidBoxIntroductionPyramidBoxTrainingPyramidBox是百度提出的人脸检测算法,提出后在widerface上排第一(现在已经不是了,但仍居前三),PyramidBox可以看做是S3FD的升级版,其各种操作都是在S3FD的基础上改进的。Introduction首先简单介绍了人脸检测的发展,SSH、S3FD通过设计具有尺度不变性的网...

2019-01-23 16:09:20 4918

原创 人脸检测算法总结:S3FD

人脸检测算法总结:S3FD——Single Shot Scale-invariant Face DetectorIntroductionS3FDTraining结论S3FD是中科院自动化所的一篇文章,当时一出现就刷新了wider face榜单,比上一篇提到的SSH略高一点。这个算法主要是解决小人脸的检测问题,思路和SSD类似(之前提到的SSH也和SSD类似),多个不同的featuremap预测不...

2019-01-23 13:23:43 2547

原创 小目标检测——An Analysis of Scale Invariance in Object Detection – SNIP

小目标检测——An Analysis of Scale Invariance in Object Detection – SNIP不同尺度的影响(Image classification at multiple scales)Data Variation or Correct ScaleObject Detection on an Image Pyramid(本文的创新点)  之前参加的人头计数...

2019-01-22 23:55:39 1072

原创 人脸检测算法总结:SSH

人脸检测算法:Single stage Headless Face Detector学习人脸检测算法,其实主要是为了前一段时间参加了云从科技的人头计数比赛,然后就看了一些针对人脸检测算法的论文,在这里总结一下。整个算法和SSD类似,均为one-stage,并且直接在featuremap金字塔上做预测,每个featuremap中的anchor尺度不同,这一点完全和SSD的思路一样。总体结构:...

2019-01-22 21:00:28 2088

原创 目标检测总结:FPN

Feature Pyramid Networks for Object Detection ——特征金字塔思路:具体应用:FPN结合Fast RCNN特征金字塔,是识别不同尺度目标的基本方法。如上图所示:(a)使用图像金字塔构建特征金字塔,速度慢,(b)只使用单一尺度特征进行更快的检测,(c)利用卷积的featuremap构建金字塔特征层次结构,是一个特征化的金字塔,上一篇介绍的SSD即为这...

2019-01-22 16:48:17 694

原创 目标检测总结:SSD

目标检测总结:SSD之前回顾了one-stage目标检测中的Yolo系列,本文介绍另一种 one-stage 框架——SSD。思想:多尺度的特征层用于目标检测,如下图所示,共有6个不同尺度的特征层进行预测。基于卷积的预测器,SSD通过卷积操作对对应特征层进行预测。默认的边界框和长宽比,与faster RCNN类似,ssd预先指定anchor的大小,但不同的是SSD是把anchor应用...

2019-01-22 14:40:34 725

原创 目标检测总结:YOLO系列(2)

目标检测总结:YOLO系列(2)Yolo v3Yolo v3v3版本针对yolo又提出了一些小的改进。使用逻辑回归预测边界框的分数用逻辑回归取代softmax预测类别,将原来的但标签多分类变为了多标签多分类,因为在一些复杂场景下,一个object可能不止属于1类。用逻辑回归层做二分类,用到了sigmoid。multiscale anchor: 将v2中的fine-grained fea...

2019-01-22 10:51:42 316

原创 目标检测总结:YOLO系列(1)

YOLO系列(1)YOLO v1之前两篇文章介绍了two-stage 的目标检测框架,本文开始介绍 one-stage。YOLO v1YOLO,解决了目标检测中最大的难题:速度,它为目标检测提供了新的思路。主要特点:1,快,2,将背景预测为前景的错误率小,3,泛化能力强。主要思想:将整张图作为网络的输入,直接在输出层回归box的位置和类别。将图像分为S×S个网格,如果某个objec...

2019-01-22 09:27:51 671

原创 目标检测总结:RCNN系列(2)

目标检测总结:RCNN系列(2)RPN上一篇介绍了RCNN和Fast RCNN,本文介绍RCNN系列的终极版本,FasterRCNN。Faster RCNN虽然是2015年的论文,但它至今认识许多目标检测算法的基础。FasterRCNN可以看做是RPN(region proposal network) + fast RCNN的系统,用RPN代替了之前的selective search 来进行r...

2019-01-21 19:17:54 477

原创 目标检测总结:RCNN系列(1)

目标检测总结:RCNN系列(1)RCNNSPP-NETSPPnet用于目标检测Fast RCNN之前主要是回顾了常见的卷积神经网络,下面开始回顾目标检测相关的算法。首先RCNN系列说起。RCNNRCNN算法主要包括两部分部分:1.region proposal 生乘候选框,2.对选出的region proposal进行特征提取。region proposal:图像中物体可能存在的区域应该...

2019-01-21 16:26:35 435

原创 卷积神经网络各个部分的理解及其前向传播、反向传播的代码实现

卷积神经网络的前向传播、反向传播及其代码实现全连接卷积池化激活函数  随着深度学习框架的兴起与发展,卷积神经网络的搭建越来越简单。我们可以自行设计网络结构,然后利用深度学习框架,只需要简单的几行代码,就可以搭建好自己的网络模型。虽然模型的搭建很容易,但网络的底层具体是怎么实现的,参数是如何传递的,我们无从可知。本文主要分析了卷积、池化、全连接以及激活函数的反向传播过程(前向传播比较基础,本文不再...

2019-01-20 18:02:22 3235 1

原创 深度学习总结:常见卷积神经网络——Xception,SeNet,ResNext,Wide Residual Networks

深度学习总结:常见卷积神经网络(3)XceptionSeNetSE机制SE模块可以直接加入到现有网络中ResNextWide Residual Networks之前两篇文章,主要回顾了主流的卷积神经网络,其中Alexnet,VGG,Resnet,Inception中的思想在后来很多网络结构中都有用到,个人认为他们是卷积神经网络发展的基础,后面很多复杂的神经网络都是在其基础上推陈出新的,这篇文章打...

2019-01-17 22:22:53 2999

原创 深度学习总结:常见卷积神经网络——AlexNet,VGG,Resnet

深度学习总结:常见卷积神经网络(1)常见模型AlexnetLRN详解VGGResnetResidual unit 详解  学习机器学习和深度学习已经一年多了,之前一直都是用笔做记录,最近面临即将到来的春招和秋招,回过头复习之前的东西,发现很多在本子上记得不是很清晰,为了以后复习起来方便,同时全面的整理之前的东西,打算开始在博客上记录。常见模型AlexnetAlexnet提出与2012年,是...

2019-01-15 21:43:57 2457

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除