深度学习中常用损失函数
损失函数是用来估量模型的预测值f(x)与真实值Y的不一致程度,它是一个非负值函数,通常用L(Y,f(x))来表示,损失函数越小,模型的鲁棒性越好。损失函数是经验风险函数的核心部分,也是结构风险函数的重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子:
其中,前面的均值函数表示的是经验风险损失函数,L表示的是损失函数,后面的是正则化项。
L1损失函数和L2损失函数
这两个损失函数通常一起比较着来说。
L1损失函数,又叫最小绝对值偏差(LAE)。它把目标值与估计值的绝对差值的总和最小化:
L2损失函数,也被称为最小平方误差。总的来说,它是把目标值与估计值的差值的平方和最小化。
L2损失函数对异常点比较敏感,因为L2将误差平方化,使得异常点的误差过大,模型需要大幅度的调整,这样会牺牲很多正常的样本。
而L1损失函数由于导数不连续,可能存在多个解,当数据集有一个微笑的变化,解可能会有一个很大的