常见卷积神经网络总结
最近时间没那么紧张了,准备把之前没看的论文总结一下,
DenseNet
DenseNet是CVPR2017的最佳论文,可见这篇论文还是很厉害的,DenseNet主要是借鉴了Resnet的思想,采取了一种全新的网络连接方式,最近的卷积神经网络主要是从深度和宽度上进行思考的,加深宽度或者加深深度,但这篇文章另辟蹊径,采取了一种新的结构,取得了很好地效果。
首先来看一下整个网络的结构,如下图所示,借鉴了Resnet的思想,Resnet是将输入和输出进行shortcut连接,而DenseNet可以看成是Resnet的极限形式,在同一个denseblock中,每一层的输入是之前所有层的输出。下图为Densenet中一个Denseblock的形状。
对比DenseNet和Resnet的公式,更有助于理解DenseNet:
Resnet的输出是上一层的输出加上这一层非线性变换之后的输出,而DenseNet某一层的输入是0~l-1层的输出的concat。这里需要注意,Resnet是做的加