常见卷积神经网络总结:Densenet

本文深入探讨了DenseNet,一种受到Resnet启发的卷积神经网络结构。DenseNet通过密集连接每一层的输入,形成网络内部的短路,解决了梯度消失问题,并且减少了参数数量,有利于特征的传递和防止过拟合。文章通过对比Resnet和DenseNet的公式,展示了DenseNet的concat操作和使用BN、ReLU、卷积的非线性变换顺序。此外,还介绍了DenseNet的bottleneck layer和transition layer,用于减少计算量并控制channel数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常见卷积神经网络总结


最近时间没那么紧张了,准备把之前没看的论文总结一下,

DenseNet

DenseNet是CVPR2017的最佳论文,可见这篇论文还是很厉害的,DenseNet主要是借鉴了Resnet的思想,采取了一种全新的网络连接方式,最近的卷积神经网络主要是从深度和宽度上进行思考的,加深宽度或者加深深度,但这篇文章另辟蹊径,采取了一种新的结构,取得了很好地效果。
首先来看一下整个网络的结构,如下图所示,借鉴了Resnet的思想,Resnet是将输入和输出进行shortcut连接,而DenseNet可以看成是Resnet的极限形式,在同一个denseblock中,每一层的输入是之前所有层的输出。下图为Densenet中一个Denseblock的形状。
在这里插入图片描述
对比DenseNet和Resnet的公式,更有助于理解DenseNet:
在这里插入图片描述
在这里插入图片描述
Resnet的输出是上一层的输出加上这一层非线性变换之后的输出,而DenseNet某一层的输入是0~l-1层的输出的concat。这里需要注意,Resnet是做的加

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值