多源最短路径 Floyd 算法(有向图) C实现 ~

Floyd算法过程:

1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。
把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i][j]=d,d表示该路的长度;否则G[i][j]=无穷大。定义一个矩阵D用来记录所插入点的信息,D[i][j]表示从Vi到Vj需要经过的点,初始化D[i][j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,G[i][j] = min( G[i][j], G[i][k]+G[k][j] ),如果G[i][j]的值变小,则D[i][j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。

Floyd算法适用于APSP(All Pairs Shortest Paths,多源最短路径),是一种动态规划算法,稠密图效果最佳,边权可正可负。此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次 Dijkstra算法,也要高于执行|V|次 SPFA算法
优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单。
缺点:时间复杂度比较高,不适合计算大量数据
核心代码:

void Floyd(Graph g)
	{
		int i, j;
		for(i = 0; i < g.vex_num; i++ ){
			for(j = 0 ; j < g.vex_num; j++){
				dist[i][j] = g.edge[i][j];
				if(g.edge[i][j] == 0 || g.edge[i][j] == INFINITY)//初始化路径(关键)
					path[i][j] = NOTEXIST;
				else
					path[i][j] = j;	
			}
		}
		int k;
		for(k = 0; k < g.vex_num; k++ ){
			for(i = 0; i < g.vex_num; i++ ){
				for(j = 0; j < g.vex_num; j++ ){
					if(dist[i][j] > dist[i][k] + dist[k][j]){
						dist[i][j] = dist[i][k] + dist[k][j];
						path[i][j] = k;
					} 
				} 
			}
		}
	}

打印路径:
void print_path(Graph g,int u, int v)
	{
//		while(u != v){    (1)非递归打印 
//			printf("%c->",g.vex[u]);
//			u = path[u][v];
//		}
//		printf("%c",g.vex[u]);
					 	//(2)递归打印 
		printf("%c",g.vex[u]);
		if(u != v){
			printf("->");
			print_path(g,path[u][v],v);
		}
	}	
void traversal(Graph g)
	{
		int i, j;
		for(i = 0; i <g.vex_num; i++ ){
			for(j = 0; j < g.vex_num; j++){
				if(is_connected(g, i, j)){// 存在路径时 
					printf("%c to %c :",g.vex[i],g.vex[j]);
					print_path(g,i,j);
					printf(" 权重和为 : %d",dist[i][j]);
					printf("\n");
				}
			}
		}	
	}

完整代码实现:

#include<stdio.h>
#include<stdlib.h>
#include<ctype.h>
#define INFINITY 65535
#define MAXVEX 100
#define NOTEXIST -1
bool visited[MAXVEX];
int path[MAXVEX][MAXVEX];
int dist[MAXVEX][MAXVEX];
typedef char VertexType;
typedef int EdgeType;  
typedef struct Graph {  
    VertexType vex[MAXVEX];  
    EdgeType edge[MAXVEX][MAXVEX];  
    int vex_num, edge_num;  
}Graph;  
  
void init_graph(Graph *g)  
{  
    int i, j;  
    for (i = 0; i < g->vex_num; i++) {  
        for (j = 0; j < g->vex_num; j++) {  
            if (i == j) {  
                g->edge[i][j] = 0;  
            }  
            else  
                g->edge[i][j] = INFINITY;  
        }  
    }  
}  
  
char read_char()  
{  
    char ch;  
    do {  
        ch = getchar();  
    } while (!isalpha(ch));  
    return ch;  
}  
  
int get_pos(Graph g, char ch)  
{  
    int i;  
    for (i = 0; i < g.vex_num; i++) {  
        if (g.vex[i] == ch)  
            return i;  
    }  
    return -1;  
}  
  
void create_graph(Graph *g)  
{  
    int i, k;  
    //printf("请输入顶点数与边数:\n");  
    scanf("%d%d", &g->vex_num, &g->edge_num);  
    init_graph(g);// 初始化  
                  //printf("请输入顶点信息:\n");  
    for (i = 0; i < g->vex_num; i++) {  
        //scanf("%c", g->vex[i]);  
        g->vex[i] = read_char();  
    }  
    //printf("请输入边的信息:\n");  
    char c1, c2;  
    int p1, p2,w;  
    for (k = 0; k < g->edge_num; k++) {  
        c1 = read_char();  
        c2 = read_char();  
        scanf("%d", &w);  
        p1 = get_pos(*g, c1);  
        p2 = get_pos(*g, c2);  
        g->edge[p1][p2] = w;//有向边的权重  
    }  
}  
  
void print_graph(Graph g)  
{  
    int i, j;  
    for (i = 0; i < g.vex_num; i++) {  
        for (j = 0; j < g.vex_num; j++) {  
            if (g.edge[i][j] == INFINITY)  
                printf("%5c", '*');  
            else {  
                printf("%5d", g.edge[i][j]);  
            }  
        }  
        printf("\n");  
    }  
}  

void Floyd(Graph g)
	{
		int i, j;
		for(i = 0; i < g.vex_num; i++ ){
			for(j = 0 ; j < g.vex_num; j++){
				dist[i][j] = g.edge[i][j];
				if(g.edge[i][j] == 0 || g.edge[i][j] == INFINITY)
					path[i][j] = NOTEXIST;
				else
					path[i][j] = j;	
			}
		}
		int k;
		for(k = 0; k < g.vex_num; k++ ){
			for(i = 0; i < g.vex_num; i++ ){
				for(j = 0; j < g.vex_num; j++ ){
					if(dist[i][j] > dist[i][k] + dist[k][j]){
						dist[i][j] = dist[i][k] + dist[k][j];
						path[i][j] = k;
					} 
				} 
			}
		}
	}
int dfs(Graph g, int i)
	{
		int  j;
		visited[i] = true;
		for(j = 0; j < g.vex_num; j++ ){
			if(!visited[j] && i != j && g.edge[i][j] != INFINITY){
				dfs(g, j);
			}
		}
	}	
int is_connected(Graph g, int u, int v)//利用 深度优先搜索判断图中u, v两点是否连通
	{
		int i, flag;
		for(i = 0; i < g.vex_num; i++ ){
			visited[i] = false;
		}
		dfs(g, u);
		if(visited[v] == true)
			return 1;
		else
			return 0;
	}	
	
void print_path(Graph g,int u, int v)
	{
//		while(u != v){    (1)非递归打印 
//			printf("%c->",g.vex[u]);
//			u = path[u][v];
//		}
//		printf("%c",g.vex[u]);
	//******************************//(2)递归打印 
		printf("%c",g.vex[u]);
		if(u != v){
			printf("->");
			print_path(g,path[u][v],v);
		}
	}	
void traversal(Graph g)//打印各路径
	{
		int i, j;
		for(i = 0; i <g.vex_num; i++ ){
			for(j = 0; j < g.vex_num; j++){
				if(is_connected(g, i, j)){// 存在路径时 
					printf("%c to %c :",g.vex[i],g.vex[j]);
					print_path(g,i,j);
					printf(" 权重和为 : %d",dist[i][j]);
					printf("\n");
				}
			}
		}	
	}
		
int main()
	{
		Graph g;
		create_graph(&g); 
		int i, j;
		Floyd(g);
		printf("\n");
		traversal(g);
		//print_graph(g);
		
		return 0;
	}



  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值