蓝桥杯 2015_9 矩阵快速幂 + 动态规划

题目描述:

赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。 
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥! 我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。 
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。  atm想计算一下有多少种不同的可能的垒骰子方式。

两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。 由于方案数可能过多,请输出模 10^9 + 7 的结果。  
不要小看了 atm 的骰子数量哦~  
「输入格式」 
第一行两个整数 n m n表示骰子数目 
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。  
「输出格式」 
一行一个数,表示答案模 10^9 + 7 的结果。  
「样例输入」

 2 1

 1 2  
「样例输出」 544  
「数据范围」 
对于 30% 的数据:n <= 5 对于 60% 的数据:n <= 100 
对于 100% 的数据:0 < n <= 10^9, m <= 36   
资源约定: 
峰值内存消耗 < 256M CPU消耗  < 2000ms   
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。  
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。  
注意: main函数需要返回0 
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。 注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。  
提交时,注意选择所期望的编译器类型。

题目思路:

简单矩阵快速幂的应用,求出递推矩阵,编程实现即可。

递推式:设dp[ i ][ j ]表示第 i 个骰子 j 面朝上的摆法有几种


递推矩阵:(根据递推式很容易可以写出)

这题利用矩阵递推式达到状态转移的目的

冲突矩阵 就是那个系数矩阵 初始矩阵就是 6行一列的矩阵 表示第一层 第J个面向上可能的种类数目

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#define MOD int(1e9+7)  
//const long long int MOD = 1e9+7;
typedef long long ll;
using namespace std;
struct Matrix{
	ll v[8][8];
	Matrix(){
		memset(v,0,sizeof(v));
	}
};

int n,m,a,b;
Matrix mul(Matrix x, Matrix y)
	{
		Matrix ans;
		for(int i = 1; i <= 6; ++i){
			for(int j = 1; j <= 6; ++j){
				for(int k = 1; k <= 6; ++k){
					ans.v[i][j] = ( ans.v[i][j] + x.v[i][k]*y.v[k][j])%MOD;
				}
			}
		}
		return ans;
	}
Matrix matrix_pow(Matrix x,int N)
	{
		Matrix ans;
		for(int i = 1; i <= 6; ++i)
			ans.v[i][i] = 1;//单位矩阵
		while(N != 0){
			if(N&1){
				ans = mul(ans,x);
			}
			x = mul(x,x);
			N >>= 1;
		}
		return ans;
	}

ll quick_mod(ll x, int N)
	{
		int ans = 1;
		while(N){
			if(N&1) ans = ans*x;
			x = x*x;
			N >>= 1; 
		}
		return ans;//忘记写返回值 结果 任意值 
	}

int main()
	{
		cin >> n >> m;
		Matrix complict,ans;
		for(int i = 1; i <= 6; ++i){//初始化冲突矩阵为1
			for(int j = 1; j <= 6; ++j){
				complict.v[i][j] = 1; 
			}
		}
		int s1,s2;
		for(int i = 0; i < m; ++i){
			cin >> s1 >> s2;
			complict.v[s1][s2] = complict.v[s2][s1] = 0;
		}
		ans = matrix_pow(complict,n-1);//矩阵快速幂
		ll sum = 0;
		for(int i = 1; i <= 6; ++i){//这里 其实 应系数矩阵的n-1次方 在乘以 初始状态矩阵,因为初始状态矩阵全是1故省去
			for(int j = 1; j <=6; ++j){
				sum = (sum + ans.v[i][j])%MOD;
			}
		}
		int t = quick_mod(4,n);//数字快速幂
	//	int t = pow(4,n);
		cout << (sum*(t%MOD))%MOD;
		return 0;	
	} 

递推原理:点击打开链接

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值