二、数据仓库和数据挖掘的OLAP技术

本文介绍了数据仓库的关键特征,包括面向主题、数据集成、随时间变化和数据不易丢失,并强调了其在数据挖掘和决策支持中的重要性。数据仓库通过数据清理和集成提供OLAP工具,支持分类、预测、关联和聚集等分析。同时,对比了数据仓库与操作数据库系统的区别,指出两者在设计和目的上的不同。
摘要由CSDN通过智能技术生成

引言

  • 数据仓库中的数据清理和数据集成,是数据挖掘的重要数据预处理步骤
  • 数据仓库提供OLAP工具,可用于不同粒度的数据分析
  • 很多数据挖掘功能都可以和OLAP操作集成,以提供不同概念层上的知识发现
    • 分类
    • 预测
    • 关联
    • 聚集

一、什么是数据仓库

数据仓库的定义很多,但却很难有一种严格的定义:

  • 它是一个提供决策支持功能的数据库,它与公司的操作数据库分开维护。
  • 为统一的历史数据分析提供坚实的平台,对信息处理提供支持

数据仓库区别于其他数据存储系统:
“数据仓库是一个面向主题的、集成的、随时间而变化的、不容易丢失的数据集合,支持管理部门的决策过程.”—W. H. Inmon

二、数据仓库的关键特征

2.1、面向主题

面向主题,是数据仓库显著区别于关系数据库系统的一个特征

  • 围绕一些主题,如顾客、供应商、产品等
  • 关注决策者的数据建模与分析,而不是集中于组织机构的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alexander plus

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值