10-4-Gradient Descent

10-4-Gradient Descent

我们现在来看看 Iterative Optimization, 我们要找到一个 v ,决定它要跨多大一步出去,然后一直更新 w ,求到一个希望是越来越好的 w 。

那么在 PLA 里是怎么做的,PLA 更新的方向是修正错误的方向。如果今天我们面对的是像 Logistic Regression 这样的 E(in) ,它是平滑的,这样的 E(in) 它可能会做一些不一样的事情,有一个可能是这样。Logistic Regression 的 error 长的就像是一个山坡的样子,现在想象我们把球放在山坡的某一个地方,也就是对于某一个 w , 我们要怎样更新 w ? 我们想象把球从山坡上滚下去,球慢慢滚,滚到谷底的时候呢,我们就知道我们找到了那个 Gradient 是 0 的点。我们现在的概念就是把球滚下去。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值