几种梯度下降方法对比(Batch gradient descent、Mini-batch gradient descent 和 stochastic gradient descent)
我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种(mini-batch gradient descent和stochastic gradient descent),关于Batch gradient descent(批梯度下降,BGD)就不细说了(一次迭代训练所有样本),因为这个大家都很熟悉,通常接触梯队下降后用的都是这个。这里主要介绍Mini-batch gradient descent和stochastic gradient descent(SGD)以及对比下Batch gradient descent、mini-batch gradient descent和stochastic gradient descent的效果。
一、Batch gradient descent
Batch gradient descent 就是一次迭代训练所有样本,就这样不停的迭代。整个算法的框架可以表示为:
X = data_input
Y = labels
parameters = initialize_parameters(layers_dims)
for i in range(0, num_iterations): #num_iterations--迭代次数
# Forward propagation
a, caches = forward_propagation(X, parameters)
# Compute cost.
cost = compute_cost(a, Y)
# Backward propagation.
grads = backward_propagation(a, caches, parameters)
# Update parameters.
parameters = update_parameters(parameters, grads)
Batch gradient descent的优点是理想状态下经过足够多的迭代后可以达到全局最优。但是缺点也很明显,就是如果你的数据集非常的大(现在很常见),根本没法全部塞到内存(显存)里,所以BGD对于小样本还行,大数据集就没法娱乐了。而且因为每次迭代都要计算全部的样本,所以对于大数据量会非常的慢。
二、stochastic gradient descent
为了加快收敛速度,并且解决大数据量无法一次性塞入内存(显存)的问题,stochastic gradient descent(SGD)就被提出来了,SGD的思想是每次只训练一个样本去更新参数。具体的实现代码如下:
X = data_input
Y = labels
permutation = list(np.random.permutation(m))
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((1, m))
for i in range(0, num_iterations):
for j in range(0, m): # 每次训练一个样本
# Forward propagation
AL,caches = forward_propagation(shuffled_X[:, j].reshape(-1,1), parameters)
# Compute cost
cost = compute_cost(AL, shuffled_Y[:, j].reshape(1,1))
# Backward propagation
grads = backward_propagation(AL, shuffled_Y[:,j].reshape(1,1), caches)
# Update parameters.
parameters = update_parameters(parameters, grads, learning_rate)
如果我们的数据集很大,比如几亿条数据, num_iterations n u m _ i t e r a t i o n s 基本上 设置1,2,(10以内的就足够了)就可以。但是SGD也有缺点,因为每次只用一个样本来更新参数,会导致不稳定性大些(可以看下图(图片来自ng deep learning 课),每次更新的方向,不想batch gradient descent那样每次都朝着最优点的方向逼近,会在最优点附近震荡)。因为每次训练的都是随机的一个样本,会导致导致梯度的方向不会像BGD那样朝着最优点。
注意:代码中的随机把数据打乱很重要,因为这个随机性相当于引入了“噪音”,正是因为这个噪音,使得SGD可能会避免陷入局部最优解中。
下面来对比下SGD和BGD的代价函数随着迭代次数的变化图:
可以看到SGD的代价函数随着迭代次数是震荡式的下降的(因为每次用一个样本,有可能方向是背离最优点的)
三、Mini-batch gradient descent
mini-batch gradient descent 是batch gradient descent和stochastic gradient descent的折中方案,就是mini-batch gradient descent每次用一部分样本来更新参数,即
batch_size
b
a
t
c
h
_
s
i
z
e
。因此,若
batch_size=1
b
a
t
c
h
_
s
i
z
e
=
1
则变成了SGD,若
batch_size=m
b
a
t
c
h
_
s
i
z
e
=
m
则变成了batch gradient descent。
batch_size
b
a
t
c
h
_
s
i
z
e
通常设置为2的幂次方,通常设置
2,4,8,16,32,64,128,256,512
2
,
4
,
8
,
16
,
32
,
64
,
128
,
256
,
512
(很少设置大于512)。因为设置成2的幂次方,更有利于GPU加速。现在深度学习中,基本上都是用 mini-batch gradient descent,(在深度学习中,很多直接把mini-batch gradient descent(a.k.a stochastic mini-batch gradient descent)简称为SGD,所以当你看到深度学习中的SGD,一般指的就是mini-batch gradient descent)。下面用几张图来展示下mini-batch gradient descent的原理(图片来自ng deep learning 课):
下面直接给出mini-batch gradient descent的代码实现:
1.首先要把训练集分成多个batch
# GRADED FUNCTION: random_mini_batches
def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
"""
Creates a list of random minibatches from (X, Y)
Arguments:
X -- input data, of shape (input size, number of examples)
Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)
mini_batch_size -- size of the mini-batches, integer
Returns:
mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
"""
np.random.seed(seed) # To make your "random" minibatches the same as ours
m = X.shape[1] # number of training examples
mini_batches = []
# Step 1: Shuffle (X, Y)
permutation = list(np.random.permutation(m))
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((1,m))
# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
num_complete_minibatches = m//mini_batch_size # number of mini batches
for k in range(0, num_complete_minibatches):
mini_batch_X = shuffled_X[:, k * mini_batch_size: (k + 1) * mini_batch_size]
mini_batch_Y = shuffled_Y[:, k * mini_batch_size: (k + 1) * mini_batch_size]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
# Handling the end case (last mini-batch < mini_batch_size)
if m % mini_batch_size != 0:
mini_batch_X = shuffled_X[:, num_complete_minibatches * mini_batch_size : m]
mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size : m]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches
2.下面是在model中使用mini-batch gradient descent 进行更新参数
seed = 0
for i in range(0, num_iterations):
# Define the random minibatches. We increment the seed to reshuffle differently the dataset after each epoch
seed = seed + 1
minibatches = random_mini_batches(X, Y, mini_batch_size, seed)
for minibatch in minibatches:
# Select a minibatch
(minibatch_X, minibatch_Y) = minibatch
# Forward propagation
AL, caches = forward_propagation(minibatch_X, parameters)
# Compute cost
cost = compute_cost(AL, minibatch_Y)
# Backward propagation
grads = backward_propagation(AL, minibatch_Y, caches)
parameters = update_parameters(parameters, grads, learning_rate)
下面来看mini-batch gradient descent 和 stochastic gradient descent 在下降时的对比图:
下面是mini-batch gradient descent的代价函数随着迭代次数的变化图:
从图中能够看出,mini-batch gradient descent 相对SGD在下降的时候,相对平滑些(相对稳定),不像SGD那样震荡的比较厉害。mini-batch gradient descent的一个缺点是增加了一个超参数
batch_size
b
a
t
c
h
_
s
i
z
e
,要去调这个超参数。
以上就是关于batch gradient descent、mini-batch gradient descent 和 stochastic gradient descent的内容。
完整的代码放到github上了:deep_neural_network_with_gd.py