monotonic queue 单调队列

index > Data Structures > monotonic queue


引子

POJ 2823 - Sliding Window,对一个长度为 n n n的数组,求每个长度为 k ( k &lt; = n ) k (k&lt;=n) k(k<=n)的区间的最小值和最大值。

暴力for可以想到一个 O ( N K ) O(NK) O(NK)的做法,当然,这篇文章是讲 O ( N ) O(N) O(N)的做法。

队列

设定一个双端队列元素是 { a [ i n d e x ] , i n d e x } \{ a[index],index\} {a[index],index} ,约束每次取到数组第 i i i个元素的时候有这样几种情况:

  • 当前元素比队尾元素值小,则不断弹出队尾,再把此元素插入。
  • 当前元素比队尾元素值大,则直接把此元素插入。

但再这个问题中还有个限制是 k k k区间,那么每次插入前我们还需要把队首元素做一次检查,如果与当前下标距离大于 k k k 则不断弹出队首。

至此,当前元素处理完毕后,队列的队首,就是以当前位置为右边界的区间的最小值。

反向思维一下就可以做最大值了。

其他

优化空间

其实很好想到,你有数组了,存下标就够了。

换个问法

除了 O ( N ) O(N) O(N)遍历定长子区间的最值,其实也可以反过来遍历得到最值区间长

比如问一个数组里,区间最小值不小于x的最大长度是多少。

这时候我们需要的关键信息变成了下标,队首出队条件变成了与x的比较。

第二个理题,牛客多校的那个题就是类似这样的问法,不过更复杂,还要考虑差值。

注意

  • STL的deque在实际情况下还是会比较慢,建议用数组模拟一个。

  • 单调队列很灵活,常常是作为题目做法的某一步。

例题

POJ 2823 - Sliding Window

int Kase, n, m;

int a[MAXN];
int ans1[MAXN], ans2[MAXN];
deque<int> rMAX, rMIN;

int main() {
    ios_base::sync_with_stdio(0);
    cin.tie(0);

    cin >> n >> m;

    for (int i = 1; i <= n; i++) {
        cin >> a[i];
    }

    for (int i = 1; i <= n; i++) {
        while (!rMIN.empty() && i - rMIN.front() >= m)
            rMIN.pop_front();
        while (!rMAX.empty() && i - rMAX.front() >= m)
            rMAX.pop_front();

        while (!rMIN.empty() && a[rMIN.back()] > a[i])
            rMIN.pop_back();

        while (!rMAX.empty() && a[rMAX.back()] < a[i])
            rMAX.pop_back();

        if (rMIN.empty() || a[rMIN.back()] <= a[i])
            rMIN.push_back(i);

        if (rMAX.empty() || a[rMAX.back()] >= a[i])
            rMAX.push_back(i);

        if (i >= m) {
            ans1[i] = a[rMIN.front()];
            ans2[i] = a[rMAX.front()];
        }
    }
    for (int j = m; j <= n; ++j) {
        cout << ans1[j] << " \n"[j == n];
    }
    for (int j = m; j <= n; ++j) {
        cout << ans2[j] << " \n"[j == n];
    }
    return 0;
}

牛客883F - Planting Trees 单调队列双指针

参考

Minimum Stack / Minimum Queue

OI Wiki - 单调队列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值