index > Data Structures > monotonic queue
引子
POJ 2823 - Sliding Window,对一个长度为 n n n的数组,求每个长度为 k ( k < = n ) k (k<=n) k(k<=n)的区间的最小值和最大值。
暴力for可以想到一个 O ( N K ) O(NK) O(NK)的做法,当然,这篇文章是讲 O ( N ) O(N) O(N)的做法。
队列
设定一个双端队列元素是 { a [ i n d e x ] , i n d e x } \{ a[index],index\} {a[index],index} ,约束每次取到数组第 i i i个元素的时候有这样几种情况:
- 当前元素比队尾元素值小,则不断弹出队尾,再把此元素插入。
- 当前元素比队尾元素值大,则直接把此元素插入。
但再这个问题中还有个限制是 k k k区间,那么每次插入前我们还需要把队首元素做一次检查,如果与当前下标距离大于 k k k 则不断弹出队首。
至此,当前元素处理完毕后,队列的队首,就是以当前位置为右边界的区间的最小值。
反向思维一下就可以做最大值了。
其他
优化空间
其实很好想到,你有数组了,存下标就够了。
换个问法
除了
O
(
N
)
O(N)
O(N)遍历定长子区间
的最值,其实也可以反过来遍历得到最值区间长
。
比如问一个数组里,区间最小值不小于x的最大长度是多少。
这时候我们需要的关键信息变成了下标,队首出队条件变成了与x的比较。
第二个理题,牛客多校的那个题就是类似这样的问法,不过更复杂,还要考虑差值。
注意
-
STL的
deque
在实际情况下还是会比较慢,建议用数组模拟一个。 -
单调队列很灵活,常常是作为题目做法的某一步。
例题
int Kase, n, m;
int a[MAXN];
int ans1[MAXN], ans2[MAXN];
deque<int> rMAX, rMIN;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cin >> n >> m;
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
for (int i = 1; i <= n; i++) {
while (!rMIN.empty() && i - rMIN.front() >= m)
rMIN.pop_front();
while (!rMAX.empty() && i - rMAX.front() >= m)
rMAX.pop_front();
while (!rMIN.empty() && a[rMIN.back()] > a[i])
rMIN.pop_back();
while (!rMAX.empty() && a[rMAX.back()] < a[i])
rMAX.pop_back();
if (rMIN.empty() || a[rMIN.back()] <= a[i])
rMIN.push_back(i);
if (rMAX.empty() || a[rMAX.back()] >= a[i])
rMAX.push_back(i);
if (i >= m) {
ans1[i] = a[rMIN.front()];
ans2[i] = a[rMAX.front()];
}
}
for (int j = m; j <= n; ++j) {
cout << ans1[j] << " \n"[j == n];
}
for (int j = m; j <= n; ++j) {
cout << ans2[j] << " \n"[j == n];
}
return 0;
}
牛客883F - Planting Trees 单调队列双指针