【每日一题Day220】LC1439有序矩阵中的第 k 个最小数组和 | 堆

文章介绍了如何使用小顶堆来解决寻找两个有序数组的最小K对和以及有序矩阵中第K个最小数组和的问题。通过小顶堆的归并策略,可以优化时间复杂度,降低到O(klog(min(n,k)))。文章提供了具体的Java代码实现,并分析了不同方法的时间和空间复杂度。
摘要由CSDN通过智能技术生成

再来做一下373,之前都没有试过用小顶堆求第K小的,有序这个条件对我而言是摆设了

查找和最小的 K 对数字【LC373】

给定两个以 升序排列 的整数数组 nums1nums2 , 以及一个整数 k

定义一对值 (u,v),其中第一个元素来自 nums1,第二个元素来自 nums2

请找到和最小的 k 个数对 (u1,v1), (u2,v2)(uk,vk)

大顶堆
  • 思路:使用大顶堆存放最小的K对数字,堆将数对之和从大到小排序,堆顶为最大值,当堆的大小大于 k k k并且当遍历到的数对之和小于堆顶数对之和时,将堆顶数对弹出,将新数对压入;当堆的大小小于 k k k时,直接将新数对压入

    • 由于数组是升序排列,因此每个数组只需要取前 m i n ( k , n ) min(k,n) min(k,n)个元素即可
  • 实现

    每个循环最多执行k次

    class Solution {
    
        public List<List<Integer>> kSmallestPairs(int[] nums1, int[] nums2, int k) {
            PriorityQueue<int[]> pq = new PriorityQueue<>((o1, o2) -> o2[0] + o2[1] - o1[0] -o1[1]);
            List<List<Integer>> res = new ArrayList<>();
            int n = nums1.length, m = nums2.length;
            for (int i = 0; i < Math.min(k, n); i++){
                for (int j = 0; j < Math.min(k, m); j++){
                    int[] n1 = new int[]{nums1[i], nums2[j]};
                    if (pq.size() < k){            
                        pq.add(n1);
                    }else if(pq.size() == k && n1[0] + n1[1] < pq.peek()[0] + pq.peek()[1]){
                        pq.poll();
                        pq.add(n1); 
                    }
                }
            }
            while(!pq.isEmpty()){
                int[] poll = pq.poll();
                res.add(Arrays.asList(poll[0], poll[1]));
            }
            return res;
        }
    }
    
    • 复杂度
      • 时间复杂度: O ( k 2 l o g k ) O(k^2logk) O(k2logk),向堆中添加元素的时间复杂度为 O ( l o g k ) O(logk) O(logk)
      • 空间复杂度: O ( k ) O(k) O(k)
小顶堆:归并

多路归并:先从一个数组中取最小的k个,然后叠加第二个数组

  • 思路:

    • 由于数组是升序的,因此最小的数对一定是 { 0 , 0 } \{0,0\} {0,0},那么第二小的数对可能是 { 0 , 1 } \{0,1\} {0,1}或者 { 1 , 0 } \{1,0\} {1,0}
    • 因此可以使用小顶堆按从小到大的顺序快速求出较小的 k k k个数对,小顶堆存储三元组 [ 值 , n u m s 1 下标 , n u m s 2 下标 ] [值,nums1下标,nums2下标] [,nums1下标,nums2下标]
    • 当出堆时,将下一个可能的数对放入堆中, { i , j + 1 } \{i,j+1\} {i,j+1}或者 { i + 1 , j } \{i+1,j\} {i+1,j}【重要】
      • { i , j } \{i,j\} {i,j}入堆时,出堆的下标可能为 { i , j − 1 } \{i,j-1\} {i,j1}或者 { i − 1 , j } \{i-1,j\} {i1,j}
      • 为了避免重复放入,保证 { i , j − 1 } \{i,j-1\} {i,j1} { i − 1 , j } \{i-1,j\} {i1,j}出堆时,只有一个会将 { i , j } \{i,j\} {i,j}入堆【可以使用哈希表记录在堆中的下标或者进行特殊规定】
      • 规定 { i , j − 1 } \{i,j-1\} {i,j1}入堆时,将 { i , j } \{i,j\} {i,j}入堆。初始化时我们需要将 { 0 , 0 } \{0,0\} {0,0} { 1 , 0 } \{1,0\} {1,0} { 2 , 0 } \{2,0\} {2,0}……进行入堆【该初始化相当于先在第一个数组中选择较小的 k k k个元素】
      • 然后出堆时,将该数对记录在结果集中,该数对为最小的第 i i i个数对。按照规则进行入堆【相当于组合第二个数组中的元素】
  • 实现

    class Solution {
        public List<List<Integer>> kSmallestPairs(int[] nums1, int[] nums2, int k) {
            int n = nums1.length, m = nums2.length;
            var ans = new ArrayList<List<Integer>>(k); // 预分配空间
            var pq = new PriorityQueue<int[]>((a, b) -> a[0] - b[0]);
            for (int i = 0; i < Math.min(n, k); i++) // 至多 k 个
                pq.add(new int[]{nums1[i] + nums2[0], i, 0});
            while (!pq.isEmpty() && ans.size() < k) {
                var p = pq.poll();
                int i = p[1], j = p[2];
                ans.add(List.of(nums1[i], nums2[j]));
                if (j + 1 < m)
                    pq.add(new int[]{nums1[i] + nums2[j + 1], i, j + 1});
            }
            return ans;
        }
    }
    
    作者:灵茶山艾府
    链接:https://leetcode.cn/problems/find-k-pairs-with-smallest-sums/solutions/2286318/jiang-qing-chu-wei-shi-yao-yi-kai-shi-ya-i0dj/
    来源:力扣(LeetCode)
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
    
    • 复杂度
      • 时间复杂度: O ( k l o g m i n ( n , k ) ) \mathcal{O}(klog min(n,k)) O(klogmin(n,k)),为了获得 k k k个数对,需要循环 k k k次每次出堆入堆的的时间复杂度为 O ( l o g m i n ( n , k ) ) \mathcal{O}(log min(n,k)) O(logmin(n,k))
      • 空间复杂度: O ( m i n ( n , k ) ) \mathcal{O}(min(n,k)) O(min(n,k))
  • 优化

    在循环的过程中将 ( i , 0 ) (i,0) (i,0)入堆。

    class Solution {
        public List<List<Integer>> kSmallestPairs(int[] nums1, int[] nums2, int k) {
            int n = nums1.length, m = nums2.length;
            var ans = new ArrayList<List<Integer>>(k); // 预分配空间
            var pq = new PriorityQueue<int[]>((a, b) -> a[0] - b[0]);
            pq.add(new int[]{nums1[0] + nums2[0], 0, 0});
            while (!pq.isEmpty() && ans.size() < k) {
                var p = pq.poll();
                int i = p[1], j = p[2];
                ans.add(List.of(nums1[i], nums2[j]));
                if (j == 0 && i + 1 < n)
                    pq.add(new int[]{nums1[i + 1] + nums2[0], i + 1, 0});
                if (j + 1 < m)
                    pq.add(new int[]{nums1[i] + nums2[j + 1], i, j + 1});
            }
            return ans;
        }
    }
    
    作者:灵茶山艾府
    链接:https://leetcode.cn/problems/find-k-pairs-with-smallest-sums/solutions/2286318/jiang-qing-chu-wei-shi-yao-yi-kai-shi-ya-i0dj/
    来源:力扣(LeetCode)
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
    

有序矩阵中的第 k 个最小数组和【LC1439】

给你一个 m * n 的矩阵 mat,以及一个整数 k ,矩阵中的每一行都以非递减的顺序排列。

你可以从每一行中选出 1 个元素形成一个数组。返回所有可能数组中的第 k 个 最小 数组和。

  • 思路
    • 我们需要从m行中每行选取1个元素,每行有n个选择,因此总共方案数为 n m n^m nm,由于需要找到的是第 k 个最小数组和,因此只需要记录最小的 k k k个和即可。
    • 只需要记录选到第 i i i行时,最小的 k k k个和即可(比这些元素大的一定不在结果中),答案一定是在这些组合的基础上添加后续元素,然后搜索下一行(进行多路归并),从小到大记录最小的 k k k个和,最后返回第 k k k个和。
暴力
  • 实现:暴力

    class Solution {
        public int kthSmallest(int[][] mat, int k) {
            // 从m行中每行选取1个元素,每行有n个选择,因此总共方案数为n^m
            // 我们最终要返回方案和为第k小的和,因此只需要记录选到第i行时,最小的k个和即可,然后进行多路归并,结果一定是在这些组合的基础上添加元素
            // 实现:暴力或者小顶堆
            int m = mat.length, n = mat[0].length;
            int[] a = new int[]{0};
            for (int[] row : mat){
                int[] b = new int[a.length * n];
                int i = 0;
                for (int num1 : a){
                    for (int num2 : row){
                        b[i++] = num1 + num2;
                    }
                }
                Arrays.sort(b);
                if (b.length > k){
                    b = Arrays.copyOfRange(b, 0, k);
                }
                a = b;
                
            } 
            return a[k - 1];
        }
    }
    
    • 复杂度
      • 时间复杂度: O ( m ∗ m i n ( n , k ) ∗ k ∗ l o g ( m i n ( n , k ) ∗ k ) ) \mathcal{O}(m*min(n,k)*k *log (min(n,k)*k)) O(mmin(n,k)klog(min(n,k)k))。m和n分别为矩阵的行和列。遍历前m行中 m i n ( n , k ) min(n,k) min(n,k)个元素,与前一次的结果进行组合,因此时间复杂度为 O ( m ∗ m i n ( n , k ) ∗ k ) \mathcal{O}(m*min(n,k)*k ) O(mmin(n,k)k)。排序的时间复杂度为 O ( l o g ( m i n ( n , k ) ∗ k ) ) \mathcal{O}(log (min(n,k)*k)) O(log(min(n,k)k))
      • 空间复杂度: O ( m i n ( n , k ) ∗ k ) \mathcal{O}(min(n,k)*k) O(min(n,k)k)
小顶堆:归并
  • 实现:小顶堆

    使用小顶堆进行优化,具体思路同[查找和最小的 K 对数字【LC373】](#查找和最小的 K 对数字【LC373】),相当于将LC373循环m次

    • 使用小顶堆按从小到大的顺序快速求出较小的 k k k个和,小顶堆存储三元组 [ 值 , n u m s 1 下标 , n u m s 2 下标 ] [值,nums1下标,nums2下标] [,nums1下标,nums2下标]
      • 出栈的元素,即为遍历到第 i i i行时第k个小的和
      • 出栈的同时,将下一行的元素加入
    class Solution {
        public int kthSmallest(int[][] mat, int k) {
            var a = new int[]{0};
            for (var row : mat)
                a = kSmallestPairs(row, a, k);
            return a[k - 1];
        }
    
        // 373. 查找和最小的 K 对数字
        private int[] kSmallestPairs(int[] nums1, int[] nums2, int k) {
            int n = nums1.length, m = nums2.length, sz = 0;
            var ans = new int[Math.min(k, n * m)];
            var pq = new PriorityQueue<int[]>((a, b) -> a[0] - b[0]);
            pq.add(new int[]{nums1[0] + nums2[0], 0, 0});
            while (!pq.isEmpty() && sz < k) {
                var p = pq.poll();
                int i = p[1], j = p[2];
                ans[sz++] = nums1[i] + nums2[j]; // 数对和
                if (j == 0 && i + 1 < n)
                    pq.add(new int[]{nums1[i + 1] + nums2[0], i + 1, 0});
                if (j + 1 < m)
                    pq.add(new int[]{nums1[i] + nums2[j + 1], i, j + 1});
            }
            return ans;
        }
    }
    
    作者:灵茶山艾府
    链接:https://leetcode.cn/problems/find-the-kth-smallest-sum-of-a-matrix-with-sorted-rows/solutions/2286593/san-chong-suan-fa-bao-li-er-fen-da-an-du-k1vd/
    来源:力扣(LeetCode)
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
    
    • 复杂度
      • 时间复杂度: O ( m ∗ k ∗ l o g ( m i n ( n , k ) ) ) \mathcal{O}(m*k*log(min(n,k))) O(mklog(min(n,k))),为了获得 k k k个数对,需要循环 k k k次每次出堆入堆的的时间复杂度为 O ( l o g m i n ( n , k ) ) \mathcal{O}(log min(n,k)) O(logmin(n,k))
      • 空间复杂度: O ( m i n ( n , k ) ) \mathcal{O}(min(n,k)) O(min(n,k))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值