我们都知道安卓有个手势解锁的界面,是一个 3 x 3 的点所绘制出来的网格。
给你两个整数,分别为 m 和 n,其中 1 ≤ m ≤ n ≤ 9,那么请你统计一下有多少种解锁手势,是至少需要经过 m 个点,但是最多经过不超过 n 个点的。
先来了解下什么是一个有效的安卓解锁手势:
每一个解锁手势必须至少经过 m 个点、最多经过 n 个点。
解锁手势里不能设置经过重复的点。
假如手势中有两个点是顺序经过的,那么这两个点的手势轨迹之间是绝对不能跨过任何未被经过的点。
经过点的顺序不同则表示为不同的解锁手势。
解释:
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |
无效手势:4 - 1 - 3 - 6
连接点 1 和点 3 时经过了未被连接过的 2 号点。
无效手势:4 - 1 - 9 - 2
连接点 1 和点 9 时经过了未被连接过的 5 号点。
有效手势:2 - 4 - 1 - 3 - 6
连接点 1 和点 3 是有效的,因为虽然它经过了点 2 ,但是点 2 在该手势中之前已经被连过了。
有效手势:6 - 5 - 4 - 1 - 9 - 2
连接点 1 和点 9 是有效的,因为虽然它经过了按键 5 ,但是点 5 在该手势中之前已经被连过了。
示例:
输入: m = 1,n = 1
输出: 9
class Solution {
public:
int numberOfPatterns(int m, int n) {
}
};