就用这道题来总结二叉搜索树的用法吧!二叉搜索树的操作集
本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree
结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
- 函数
Insert
将X
插入二叉搜索树BST
并返回结果树的根结点指针; - 函数
Delete
将X
从二叉搜索树BST
中删除,并返回结果树的根结点指针;如果X
不在树中,则打印一行Not Found
并返回原树的根结点指针; - 函数
Find
在二叉搜索树BST
中找到X
,返回该结点的指针;如果找不到则返回空指针; - 函数
FindMin
返回二叉搜索树BST
中最小元结点的指针; - 函数
FindMax
返回二叉搜索树BST
中最大元结点的指针。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9
我的代码:
BinTree Insert( BinTree BST, ElementType X )
{
if(BST==NULL) //如果为空,那么这里就是要插入的地方
{
BST = (BinTree)malloc(sizeof(struct TNode)); //申请空间
BST->Data = X; //赋值
BST->Left = NULL;
BST->Right = NULL;
}
//如果大于,去右子树找
else if(X>BST->Data) BST->Right = Insert(BST->Right,X);
//如果小于等于,去左子树找
else BST->Left = Insert(BST->Left,X);
return BST;
}
BinTree Delete( BinTree BST, ElementType X )
{
BinTree tmp;
//如果X不在树中
if(!BST) printf("Not Found\n");
//如果找到了要删除的X
else if(BST->Data==X)
{
//左子树和右子树都不为空
if(BST->Left&&BST->Right)
{
//右子树的最小值
tmp = FindMax(BST->Left);
BST->Data = tmp->Data; //让当前的结点值等于替换值
BST->Left = Delete(BST->Left,tmp->Data); //然后删掉这个替换值的结点
}
//至少有一者为空
else
{
tmp = BST;
//如果左子树为空,即右子树不为空,把右子树整棵都给BST,包括数值和关系网
if(!BST->Left) BST = BST->Right;
//同理
else if(!BST->Right) BST = BST->Left;
free(tmp); //最后释放掉
}
}
//如果大于,去右子树删除
else if(X>BST->Data) BST->Right = Delete(BST->Right,X);
else BST->Left = Delete(BST->Left,X);
return BST;
}
Position Find( BinTree BST, ElementType X )
{
//如果树不为空
while(BST)
{
if(BST->Data==X) return BST; //找到,返回
else if(X>BST->Data) BST = BST->Right;
else BST = BST->Left;
}
return NULL;
}
//右子树的最小值
Position FindMin( BinTree BST )
{
if(!BST) return NULL; //树为空,返回NULL
while(BST->Left)
{
BST = BST->Left; //一直找一直找,直到最左边的子树出现
}
return BST;
}
//同理
Position FindMax( BinTree BST )
{
if(!BST) return NULL;
while(BST->Right)
{
BST = BST->Right;
}
return BST;
}