【二叉查找树】二叉搜索树的操作集

就用这道题来总结二叉搜索树的用法吧!二叉搜索树的操作集


本题要求实现给定二叉搜索树的5种常用操作。

函数接口定义:

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};
  • 函数InsertX插入二叉搜索树BST并返回结果树的根结点指针;
  • 函数DeleteX从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
  • 函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
  • 函数FindMin返回二叉搜索树BST中最小元结点的指针;
  • 函数FindMax返回二叉搜索树BST中最大元结点的指针。

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT );  /* 中序遍历,由裁判实现,细节不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");

    return 0;
}
/* 你的代码将被嵌在这里 */

输入样例:

10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3

输出样例:

Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9

 

 


我的代码: 

BinTree Insert( BinTree BST, ElementType X )
{
	if(BST==NULL) //如果为空,那么这里就是要插入的地方 
	{
		BST = (BinTree)malloc(sizeof(struct TNode)); //申请空间 
		BST->Data = X; //赋值 
		BST->Left = NULL;
		BST->Right = NULL;
	}
	//如果大于,去右子树找 
	else if(X>BST->Data) BST->Right = Insert(BST->Right,X);
	//如果小于等于,去左子树找 
	else BST->Left = Insert(BST->Left,X);
	return BST;
} 

BinTree Delete( BinTree BST, ElementType X )
{
	BinTree tmp;
	//如果X不在树中 
	if(!BST) printf("Not Found\n");
	//如果找到了要删除的X 
	else if(BST->Data==X)
	{
		//左子树和右子树都不为空 
		if(BST->Left&&BST->Right)
		{
			//右子树的最小值 
			tmp = FindMax(BST->Left);
			BST->Data = tmp->Data; //让当前的结点值等于替换值 
			BST->Left = Delete(BST->Left,tmp->Data); //然后删掉这个替换值的结点 
		}
		//至少有一者为空 
		else
		{
			tmp = BST;
			//如果左子树为空,即右子树不为空,把右子树整棵都给BST,包括数值和关系网 
			if(!BST->Left) BST = BST->Right;
			//同理 
			else if(!BST->Right) BST = BST->Left;
			free(tmp); //最后释放掉 
		}
	}
	//如果大于,去右子树删除 
	else if(X>BST->Data) BST->Right = Delete(BST->Right,X);
	else BST->Left = Delete(BST->Left,X);
	return BST;
}

Position Find( BinTree BST, ElementType X )
{
	//如果树不为空 
	while(BST)
	{
		if(BST->Data==X) return BST; //找到,返回 
		else if(X>BST->Data) BST = BST->Right;  
		else BST = BST->Left;
	}
	return NULL;
}

//右子树的最小值 
Position FindMin( BinTree BST )
{
	if(!BST) return NULL; //树为空,返回NULL 
	while(BST->Left)
	{
		BST = BST->Left; //一直找一直找,直到最左边的子树出现 
	}
	return BST;
}

//同理 
Position FindMax( BinTree BST )
{
	if(!BST) return NULL;
	while(BST->Right)
	{
		BST = BST->Right;
	}
	return BST;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值