模型融合

模型融合是比赛后期一个非常重要的环节,可以说是提升成绩的大杀器

简单加权融合

回归(分类概率)

主要包括算术平均融合(Arithmetic mean)和几何平均融合(Geometric mean)

import numpy as np
import pandas as pd
from sklearn import metrics

## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]

# y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6] 

## 定义结果的加权平均函数
def Weighted_method(test_pre1,test_pre2,test_pre3,w=[1/3,1/3,1/3]):
    Weighted_result = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)
    return Weighted_result

print('Pred1 MAE:',metrics.mean_absolute_error(y_test_true, test_pre1))
print('Pred2 MAE:',metrics.mean_absolute_error(y_test_true, test_pre2))
print('Pred3 MAE:',metrics.mean_absolute_error(y_test_true, test_pre3))

## 根据加权计算MAE
w = [0.3,0.4,0.3] # 定义比重权值
Weighted_pre = Weighted_method(test_pre1,test_pre2,test_pre3,w)
print('Weighted_pre MAE:',metrics.mean_absolute_error(y_test_true, Weighted_pre))

在这里插入图片描述

分类Voting融合

  • Voting即投票机制,其原理采用少数服从多数的思想
  • Voting又分为硬投票(权重一样)和软投票(权重不同)
import numpy as np
import lightgbm as lgb
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.ensemble import VotingClassifier
from sklearn.model_selection import cross_val_score

iris = datasets.load_iris()

x=iris.data
y=iris.target
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

clf1 = lgb.LGBMClassifier(learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=2, subsample=0.7,
                     colsample_bytree=0.6, objective='binary:logistic')
clf2 = RandomForestClassifier(n_estimators=200, max_depth=10, min_samples_split=10,
                              min_samples_leaf=63,oob_score=True)
clf3 = SVC(C=0.1)

# 硬投票
eclf = VotingClassifier(estimators=[('lgb', clf1), ('rf', clf2), ('svc', clf3)], voting='hard')
for clf, label in zip([clf1, clf2, clf3, eclf], ['LGB', 'Random Forest', 'SVM', 'Ensemble']):
    scores = cross_val_score(clf, x, y, cv=5, scoring='accuracy')
    print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))

在这里插入图片描述

综合融合

主要包括排序融合(Rank average)和 log融合

stacking/blending

其思想是构建多层模型,并利用预测结果再拟合预测

<待填坑>

bagging/boosting

<待填坑>

Python模型融合是一种将多个模型组合在一起以提高整体表现的技术。在机器学习比赛中,特别是团队参与的比赛中,模型融合是一个重要的手段,可以在模型相差较大但表现良好的情况下显著提升结果。 在Python中,有几种常见的模型融合方法。其中一种是投票法(Voting),它通过集成多个模型的预测结果,并根据多数投票的原则来确定最终的预测结果。在使用Python进行投票法模型融合时,可以使用`sklearn.ensemble.VotingClassifier`类来实现。 另一种常见的模型融合方法是堆叠法(Stacking),它通过训练一个元模型来融合多个基模型的预测结果。在Python中,可以使用`mlxtend.classifier.StackingClassifier`类来实现堆叠法模型融合。 除了投票法和堆叠法,还有其他的模型融合方法,如加权平均、Bagging等。这些方法都可以在Python中通过相应的库和函数来实现。选择何种方法取决于具体的问题和数据集的特点。 总结起来,Python模型融合是一种将多个模型组合在一起以提高整体表现的技术。投票法和堆叠法是常见的模型融合方法,在Python中可以使用相应的库和函数来实现。具体选择哪种方法需要根据问题和数据集的特点来决定。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [模型融合](https://blog.csdn.net/Lemon_pudding/article/details/108813638)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Python数据科学竞赛模型融合](https://blog.csdn.net/qq_43240913/article/details/110822100)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值