题目:这是题目
题意为:给一个矩阵,里面有一些方块和一个Pushboy,a,b,c...分别代表方块的数目为1,2,3...以此类推。目标就是把矩阵里面的方块都推完,有几个规则如下:
1. Pushboy和方块之间必须有一个空,也就是不能紧挨着。
2. 每次推一个木块,木块的数目会减1,并且剩余的木块会和当前方向的前一个方格的木块数合并,当然如果前一个方格是边界外,方块就全部推出。
最后要找到Pushboy的起始位置和推方块的方向路径。
之前wa了两发是题意中推了一次方块和不仅方块数量减1,而且位置要发生改变,没有注意到这个,后面wa了一发是dfs状态还原一不留神错了。
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
using namespace std;
const int MAX = 30;
int x[4] = {1, 0, 0, -1};
int y[4] = {0, 1, -1, 0};
char _map[MAX][MAX];
int a[MAX][MAX];
int num;
int r, c;
char path[700];
int k;
char Getpath(int i) {
if (i == 0)
return 'D';
else if (i == 1)
return 'R';
else if (i == 3)
return 'U';
else
return 'L';
}//判断走的方向,和前面的x和y数组有关
bool dfs(int xx, int yy, int sum) {
if (sum == num)
return true;
for (int i = 0; i < 4; i++) {
int xi = xx + x[i];
int yi = yy + y[i];
if (xi >= 0 && xi < c && yi >= 0 && yi < r) {
if (a[xi][yi] > 0)
continue;//该方格有木块,不能推,往下一个方向
else {
while (xi >= 0 && xi < c && yi >= 0 && yi < r) {
xi += x[i];
yi += y[i];
if (a[xi][yi] > 0) {
break;
}
}
}//否则一直沿着该方向,走到有方块的那个方格
if (xi >= 0 && xi < c && yi >= 0 && yi < r) {
int nm = a[xi][yi];
int xxx = xi+x[i];
int yyy = yi+y[i];//该方向有方块方格的前一个方格
if (xxx >= 0 && xxx < c && yyy >= 0 && yyy < r) {
a[xi][yi] = 0;
a[xxx][yyy] += nm-1;
if (dfs(xi, yi, sum+1)) {
path[k++] = Getpath(i);//记录路径
return true;
}
a[xi][yi] = nm;
a[xxx][yyy] -= (nm-1);
}//有方块方格的前一个方格有方块,则该方格方块数目为(本身的方块数+前一个方格的方块数-1)
else {
a[xi][yi] = 0;
if (dfs(xi, yi, sum+nm)) {
path[k++] = Getpath(i);
return true;
}
a[xi][yi] = nm;
}//前一个方格为边界外,直接清0
}
}
}
return false;
}
int main() {
while(scanf("%d%d", &r, &c) != EOF) {
getchar();
memset(a, 0, sizeof(a));
num = 0;
k = 0;
for (int i = 0; i < c; i++) {
for (int j = 0; j < r; j++) {
scanf("%c", &_map[i][j]);
if (_map[i][j] == '.')
a[i][j] = 0;
else {
a[i][j] = _map[i][j] - 'a' + 1;
num += a[i][j];
}
}
getchar();
}
bool tag;
for (int i = 0; i < c; i++) {
tag = false;
for (int j = 0; j < r; j++) {
if (a[i][j] == 0) {
if (dfs(i, j, 0)) {
printf("%d\n%d\n", i, j);
tag = true;
break;
}
}
}
if (tag)
break;
}
for (int i = k-1; i >= 0; i--)
printf("%c", path[i]);
printf("\n");
}
return 0;
}