Description
FGD小朋友特别喜欢爬山,在爬山的时候他就在研究山峰和山谷。为了能够让他对他的旅程有一个安排,他想
知道山峰和山谷的数量。给定一个地图,为FGD想要旅行的区域,地图被分为n*n的网格,每个格子(i,j) 的高度w(
i,j)是给定的。若两个格子有公共顶点,那么他们就是相邻的格子。(所以与(i,j)相邻的格子有(i?1, j?1),(i?1
,j),(i?1,j+1),(i,j?1),(i,j+1),(i+1,j?1),(i+1,j),(i+1,j+1))。我们定义一个格子的集合S为山峰(山谷)当
且仅当:1.S的所有格子都有相同的高度。2.S的所有格子都联通3.对于s属于S,与s相邻的s’不属于S。都有ws >
ws’(山峰),或者ws < ws’(山谷)。你的任务是,对于给定的地图,求出山峰和山谷的数量,如果所有格子
都有相同的高度,那么整个地图即是山峰,又是山谷。
Input
第一行包含一个正整数n,表示地图的大小(1<=n<=1000)。接下来一个n*n的矩阵,表示地图上每个格子的高
度。(0<=w<=1000000000)
Output
应包含两个数,分别表示山峰和山谷的数量。
Sample Input
输入样例1
5
8 8 8 7 7
7 7 8 8 7
7 7 7 7 7
7 8 8 7 8
7 8 8 8 8
输入样例2
5
5 7 8 3 1
5 5 7 6 6
6 6 6 2 8
5 7 2 5 8
7 1 0 1 7
5
8 8 8 7 7
7 7 8 8 7
7 7 7 7 7
7 8 8 7 8
7 8 8 8 8
输入样例2
5
5 7 8 3 1
5 5 7 6 6
6 6 6 2 8
5 7 2 5 8
7 1 0 1 7
Sample Output
输出样例1
2 1
输出样例2
3 3
2 1
输出样例2
3 3
HINT
Solve
bfs,洪水算法
#include<iostream>
#include<cstdlib>
#include<cstdio>
#define now a[quex[tot]][quey[tot]]
using namespace std;
int a[1005][1005];
int n,ans[3],flag,f,nx,ny;
int fx[8]={0,0,1,-1,1,1,-1,-1};
int fy[8]={1,-1,0,0,-1,1,-1,1};
int quex[2000005],quey[2000005],tot,tow;
bool vis[1005][1005];
char ch;
inline void orzcy(int &s){
s=0;ch=getchar();f=1;
for (;ch<'0'||ch>'9';ch=getchar())
if (ch=='-')f=-1;
for (;ch>='0'&&ch<='9';ch=getchar())
s=(s<<3)+(s<<1)+ch-'0';
}
inline void bfs(int x,int y){
quex[tot=1]=x;quey[tow=1]=y;vis[x][y]=1;
while (tot<=tow){
for (int i=0;i<8;++i){
nx=quex[tot]+fx[i];
ny=quey[tot]+fy[i];
if (nx<1 || nx>n || ny<1 || ny>n)continue;
if (a[nx][ny]==now && !vis[nx][ny]){
quex[++tow]=nx;
quey[tow]=ny;
vis[nx][ny]=1;
}
else if (a[nx][ny]<now){
if (flag!=1 && flag!=-1)flag=0;
else flag=1;
}
else if (a[nx][ny]>now){
if (flag!=2 && flag!=-1)flag=0;
else flag=2;
}
}
++tot;
}
}
int main (){
orzcy(n);
for (int i=1;i<=n;++i)
for (int j=1;j<=n;++j)
orzcy(a[i][j]);
for (int i=1;i<=n;++i)
for (int j=1;j<=n;++j)
if (!vis[i][j]){
flag=-1;
bfs(i,j);
if (flag!=-1)ans[flag]++;
else {ans[1]++;ans[2]++;}
}
printf ("%d %d",ans[1],ans[2]);
return 0;
}