(笔记)区块链技术笔记——区块链中的密码学2

(笔记)区块链技术笔记——区块链中的密码学2(RSA加密算法笔记)


此篇笔记介绍应用区块链技术的密码学技术 并且参照样例进行解释 这样可能更利于理解吧hahaha 非对称密码较难理解,需要有准备知识,如欧拉函数、对取模运算和模反运算较为熟悉。 继接(笔记)密码学1

(笔记)区块链技术笔记——区块链中的密码学1

三、非对称密码

在对称加密算法中,加密和解密过程中使用的是同一个秘钥。而非对称加密算法需要两个密钥来进行加密和解密,这两个密钥分别是公开的密钥(public key,简称 公钥 )和私有密钥(private key,简称 私钥 )。

1、RSA加密算法

创立

于1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的,
* RSA由三人姓氏首字母组成

原理

RSA公开密钥密码体制的原理是:根据数论,寻求两个大素数比较简单,而将它们的乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥

例题描述

  • 预备知识:欧拉函数、模反运算

题目

step1:随机选择两个不相等的质数 p 和 q
例如选择 p = 3 ,q = 11
step2:计算p和q的乘机n, n = pq , n = 3 * 11 = 33
step3:计算 n 的欧拉函数 ϕ ( n ) = ϕ ( 33 ) = 20 \phi(n) = \phi (33) = 20 ϕ(n)=ϕ(33)=20
step4:随机选择一个整数e,满足 1 < e < ϕ ( n ) , 且 e 与 ϕ ( n ) 互 质 1 < e < \phi(n),且e与 \phi(n) 互质 1<e<ϕ(n)eϕ(n)

随机取得 e = 3 , n = 33 , ϕ ( n ) = 20 \phi(n) = 20 ϕ(n)=20

获得密钥

step1:计算 e 对 ϕ ( n ) e 对 \phi(n) eϕ(n) 的模反元素 d
模反元素 d ,求解二元一次方程 e x + ϕ ( n ) y = 1 ex + \phi(n)y = 1 ex+ϕ(n)y=1 , 选择其中一个解,得 d = 7
step2:将(n,e)封装成 ‘公钥’ ,(n,d)封装成 ‘私钥’
通过将 e = 3 , n = 33 , ϕ ( n ) = 20 \phi(n) = 20 ϕ(n)=20 代入上公式

所以公钥就是(33,3),私钥就是(33,7)

加密过程

例如:发送加密信息:m 给接收方

使用公钥(n,e) 加密信息:m (m 必为整数,且 m < n)
" 加密 " 由加密函数: m e m o d n = C m^e mod n = C memodn=C ,得到 C

加密例题

使用公钥(33,3)对信息:m 进行加密 ,信息 m = 2
所以, m e m o d n = 2 3 m o d 33 = 8 = C m^e mod n = 2^3 mod 33 = 8 =C memodn=23mod33=8=C
将C = 8 发送给接受方

解密过程

接收方收到信息 C = 8 ,使用私钥(n,d)进行解密

使用私钥(33,7)对加密信息:C = 8 进行解密
解密函数: C d m o d n = m C^d mod n = m Cdmodn=m
所以, C d m o d n = 8 7 m o d 33 = 2097152 m o d 33 = 2 C^d mod n = 8^7 mod 33 = 2097152 mod 33 = 2 Cdmodn=87mod33=2097152mod33=2
得到加密前原文为 2


2、ECC 椭圆加密算法

创立

椭圆加密算法(Elliptic curve cryptography)是一种公钥加密体制,最初由 Koblitz 和 Miller 两人于1985年提出

原理

数学基础是利用椭圆曲线上的有理点构成Abel加法群上椭圆离散对数的计算困难性。
公钥密码体制根据其所依据的难题一般分为三类:大素数分解问题类、离散对数问题类、椭圆曲线类。有时也把椭圆曲线类归为离散对数类。
但也有缺点,加密和解密操作的实现比其他机制花费的时间长。

例题描述

预备知识:欧拉函数、模反运算、逆元运算

题目

生成密钥、加密及解密过程


篇幅所限跳转继接

(笔记)区块链技术笔记——区块链中的密码学3


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: 好的,下面是SparkSQL代码笔记03——连接Hive的文回复: 在SparkSQL,我们可以通过以下步骤连接Hive: 1. 首先,需要在SparkSession启用Hive支持,可以使用以下代码: ``` from pyspark.sql import SparkSession spark = SparkSession.builder \ .appName("SparkSQL Hive Example") \ .config("spark.sql.warehouse.dir", "/user/hive/warehouse") \ .enableHiveSupport() \ .getOrCreate() ``` 其,`enableHiveSupport()`方法启用了Hive支持,`config("spark.sql.warehouse.dir", "/user/hive/warehouse")`指定了Hive元数据存储的目录。 2. 接下来,我们可以使用`spark.sql()`方法执行Hive SQL语句,例如: ``` spark.sql("show databases").show() ``` 这将显示所有的Hive数据库。 3. 如果需要在SparkSQL访问Hive表,可以使用以下代码: ``` df = spark.sql("select * from my_hive_table") ``` 其,`my_hive_table`是Hive的表名。 4. 如果需要在SparkSQL创建Hive表,可以使用以下代码: ``` spark.sql("create table my_hive_table (id int, name string)") ``` 这将在Hive创建一个名为`my_hive_table`的表,包含两个列:`id`和`name`。 以上就是连接Hive的基本步骤。需要注意的是,连接Hive需要在Spark集群安装Hive,并且需要将Hive的JAR包添加到Spark的CLASSPATH。 ### 回答2: SparkSQL是Apache Spark的一个组件,它提供了用于分布式数据处理的高级SQL查询引擎。SparkSQL支持连接多种数据源,其之一就是Hive。 如何连接Hive? 在开始连接Hive之前,我们需要确保Hadoop和Hive的配置已经被正确的设置好了,以便Spark能够访问Hive元数据和数据。 首先,我们需要在Spark环境添加Hive支持。运行下面的代码: `from pyspark.sql import SparkSession spark = SparkSession.builder \ .appName("hive_support") \ .enableHiveSupport() \ .getOrCreate()` 其,`.enableHiveSupport()`将启用hive支持。 接下来,我们可以使用SparkSession连接Hive。运行下面的代码: `hive_df = spark.sql("SELECT * FROM default.student")` 其,“default”是Hive的默认数据库,“student”是Hive数据库的表名。 如果你要访问非默认的Hive数据库,可以使用下面的代码: `hive_df = spark.sql("SELECT * FROM dbname.student")` 其,“dbname”是非默认的Hive数据库名。 我们还可以使用HiveContext来连接Hive。运行下面的代码: `from pyspark.sql import HiveContext hive_context = HiveContext(sc)` 其,“sc”是SparkContext对象。 我们可以像这样从Hive检索数据: `hive_df = hive_ctx.sql("SELECT * FROM default.student")` 现在你已经成功地连接Hive并从检索了数据,你可以使用SparkSQL的强大功能对数据进行分析。而在连接Hive之外,在SparkSQL还可以连接其他数据源,包括MySQL、PostgreSQL、Oracle等。 ### 回答3: Spark SQL是一个强大的分布式计算引擎,它可以支持处理多种数据源,并可通过Spark SQL shell、Spark应用程序或JDBC/ODBC接口等方式进行操作。其,连接Hive是Spark SQL最常用的数据源之一。下面,将介绍如何通过Spark SQL连接Hive。 1、在Spark配置设置Hive Support 要连接Hive,首先需要在Spark配置开启Hive Support。在启动Spark Shell时,可以添加如下参数: ``` ./bin/spark-shell --master local \ --conf spark.sql.warehouse.dir="/user/hive/warehouse" \ --conf spark.sql.catalogImplementation=hive \ --conf spark.sql.hive.metastore.version=0.13 \ --conf spark.sql.hive.metastore.jars=maven ``` 这里以本地模式为例,设置Spark SQL的元数据存储在本地文件系统,设置Hive为catalog实现,以及为Hive Metastore设置版本和JAR文件路径。根据实际情况,还可以指定其他参数,如Hive Metastore地址、数据库名称、用户名和密码等。 2、创建SparkSession对象 在连接Hive之前,需要先创建SparkSession对象。可以通过调用SparkSession.builder()静态方法来构建SparkSession对象,如下所示: ``` val spark = SparkSession.builder() .appName("SparkSQLTest") .config("spark.sql.warehouse.dir", "/user/hive/warehouse") .enableHiveSupport() .getOrCreate() ``` 这里通过builder()方法指定应用程序名称、元数据存储路径以及启用Hive Support,最后调用getOrCreate()方法创建SparkSession对象。 3、通过Spark SQL操作Hive表 通过Spark SQL连接Hive后,就可以通过Spark SQL语句来操作Hive表了。例如,我们可以使用select语句查询Hive表的数据: ``` val df = spark.sql("SELECT * FROM tablename") df.show() ``` 其,select语句指定要查询的列和表名,然后通过show()方法来显示查询结果。 除了查询数据之外,Spark SQL还可以通过insertInto语句将数据插入到Hive表: ``` val data = Seq(("Alice", 25), ("Bob", 30)) val rdd = spark.sparkContext.parallelize(data) val df = rdd.toDF("name", "age") df.write.mode(SaveMode.Append).insertInto("tablename") ``` 这里先创建一个包含数据的RDD对象,然后将其转换为DataFrame对象,并指定列名。接着,通过insertInto()方法将DataFrame对象的数据插入到Hive表。 总之,通过Spark SQL连接Hive可以方便地查询、插入、更新和删除Hive表的数据,从而实现更加灵活和高效的数据处理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山南打柴人

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值