- 博客(27)
- 问答 (2)
- 收藏
- 关注
原创 [动手学深度学习]Task02:预备知识
都是些基础操作,只能说,别谦简单,自己都过一遍,不要眼高手低,血泪教训,基础扎实对于阅读他人代码也有好处,否则很有可能导致连代码都看不懂张量表示一个数值组成的数组,这个数组可能有多个维度通过张量的shape属性访问张量的形状和元素总数改变一个张量的形状而不改变元素数量和元素值,可以用reshape函数把张量x从形状为(12)的行向量转换为形状为(3.4)的矩阵使用全0、全1、其他常量或者从特定分布中随机采样的数字通过提供包含数值的Python列表(或者嵌套列表)来为所需张量的每个元素赋予确定值。
2023-03-21 20:26:42 204
原创 P1009 [NOIP1998 普及组] 阶乘之和 java 100分
2.复习高精度,把 int 全变为高精度表示,这里比较难的就是BigInteger的算术运算。补充:java菜鸟一个,硬解的,不会高级操作。1.双层嵌套把阶乘+和搞定。这个题目的主要亮点就是。
2023-03-11 16:34:47 269
原创 P1055 [NOIP2008 普及组] ISBN 号码 java 100分
P1055 [NOIP2008 普及组] ISBN 号码 java实现
2023-03-11 12:17:01 229
原创 [统计学习方法习题实战]Task06:Logistic回归与最大熵模型
1.logistic回归模型是由以下条件概率分布表示的分类模型。logistic回归模型可以用于二类或多类分类。2.最大嫡模型是由以下条件概率分布表示的分类模型。最大嫡模型也可以用于二类或多类分类。3.最大嫡模型可以由最大嫡原理推导得出。4.logistic回归模型与最大嫡模型都属于对数线性模型。5.logistic回归模型及最大嫡模型学习一般采用极大似然估计,或正则化的极大似然估计。
2023-03-02 21:23:18 211
原创 [统计学习方法习题实战]Task05:决策树
>1.分类决策树模型是表示基于特征对实例进行分类的树形结构。>2.决策树学习旨在构建一个与训练数据拟合很好,并且复杂度小的决策树。因为从可能的决策树中直接选取最优决策树是NP完全问题。现实中采用启发式方法学习次优的决策树。>学习算法包括:`特征选择`、`树的生成`和`树的剪枝`>常用的算法有:`ID3`、`C4.5`和`CART`>3.特征选择的目的在于选取对训练数据能够分类的特征。>4.决策树的生成。通常使用信息增益最大、信息增益比最大或基尼指数最小作为特征选择的准则。>5.决策树的剪枝。由于
2023-02-27 23:09:35 125
原创 [统计学习方法习题实战]Task04:朴素贝叶斯法
1.朴素贝叶斯法是典型的生成学习方法。生成方法由训练数据学习联合概率分布P(X,Y),然后求得后验概率分布P(Y|X)。2.朴素贝叶斯法的基本假设是条件独立性,3.朴素贝叶斯法利用贝叶斯定理与学到的联合概率模型进行分类预测.
2023-02-24 21:58:00 158
原创 [统计学习方法习题实战]Task03:k近邻算法
1.k近邻法的`基本做法`是:对给定的训练实例点和输入实例点,首先确定输入实例点的k个最近邻训练实例点,然后利用这k个训练实例点的类的多数来预测输入实例点的类。2.k近邻法中,当训练集、距离度量、k值及分类决策规则确定后,其结果唯一确定。3.k近邻法`三要素`:距离度量、k值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的L距离。k值小时,k近邻模型更复杂;k值大时,k近邻模型更简单。k值的选择反映了对近似误差与估计误差之间的权衡,通常由`交叉验证`选择最优的k。4.`kd树`是一种便于对k
2023-02-21 20:27:28 167
原创 [统计学习方法习题实战]Task02:第二章感知机
3.感知机学习算法是基于随机梯度下降法的对损失函数的最优化算法,有原始形式和对偶形式。算法简单且易于实现。原始形式中,首先任意选取一个超平面,然后用梯度下降法不断极小化目标函数。
2023-02-18 12:22:57 103
原创 [统计学习方法习题实战]Task01:第一章统计学习方法概论
1.统计学习或机器学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行分析与预测的一门学科。统计学习包括监督学习、无监督学习和强化学习。2.统计学习方法三要素一一模型、 策略、算法,对理解统计学习方法起到纲领的作用。3.统计学习中,进行模型选择或者说提高学习的泛化能力是一个重要问题。4.分类问题、标注问题和回归问题都是监督学习的重要问题。
2023-02-16 01:30:45 131
原创 [Pytorch图像分类全流程实战]Task07:模型部署
通常我们在训练模型时可以使用很多不同的框架,比如有的同学喜欢用 Pytorch,有的同学喜欢使用TensorFLow,也有的喜欢wXNet,以及深度学习最开始流行的caffe等等,这样不同的训练框架就导致了产生不同的模型结果包,在模型进行部署推理时就需要不同的依赖库,而且同一个框架比如tensorflow不同的版本之间的差异较大,为了解决这个混乱问题,LF Al这个组织联合Facebook, MicroSoft等公司制定了机器学习模型的标准,这个标准叫做ONNX
2023-01-30 20:02:35 694
原创 [Pytorch图像分类全流程实战]Task06:可解释性分析
不知道这个与可解释机器学习的关联有多大,因为在学习可解释性机器学习也学过这部分内容:CAM热力图系列算法、Deep Feature Factorization、Captum工具包、shap工具包、lime工具包。感觉确实之前的课程讲的细致一些就可解释性上,不过也可能没啥可比性,之前可解释性机器学习是基于论文来实战这个课程是基于之前的实战过程来实战。1.CAM热力图算法。
2023-01-29 00:37:25 1243
原创 [Pytorch图像分类全流程实战]Task04:新图片、新视频预测
使用上一讲Pytorch迁移学习训练得到的30类水果图像分类模型,对新图像文件、新视频文件、摄像头实时画面,运行图像分类预测。
2023-01-26 23:38:35 414
原创 [Pytorch图像分类全流程实战]Task03:迁移学习微调
本节使用深度学习框架Pytorch,在lmageNet预训练图像分类模型基础上,对自己的30类水果图像分类数据集进行迁移学习微调训练(两个函数),得到自己的图像分类模型。在训练过程中,记录训练集和测试集的损失函数、准确率、Precision、Recall、f1-score等评估指标,使用wandb可视化面板监控。
2023-01-24 18:33:10 1004
原创 [Pytorch图像分类全流程实战]Task02:预训练模型预测
并不适合直接用来学习Pytorch,主要面向于Pytorch的运用,视频中基本上就是将流程过一遍,讲的没有想象中那么细,可能是因为自己毕竟也有蛮多东西是本身就不懂的,然后预训练的方面也很全,图片、视频、实时画面都照顾到了,还有英文与中文的问题,总的来说还是干货满满的
2023-01-19 00:49:05 726
原创 [Pytorch图像分类全流程实战] Task01:构建自己的图像分类数据集
这部分之前在可解释机器学习里面听过,但是当时在实战部分说实话就是跟着打了遍代码,对其过程了解的并不是那么清楚,希望本次能够有所收获。不同拍摄环境(光照、设备、拍摄角度、遮挡、远近、大小)老师给的数据测试集81个文件夹,训练集也81个文件夹。多样性、代表性、一致性——包含多种场景,防止过拟合。不同形态(完整西瓜、切瓣西瓜、切块西瓜)不同图像域(照片、漫画、剪贴画、油画)【B3】制作图像分类数据集的注意事项。不同部位(全瓜、瓜皮、瓜瓤、瓜子)不同时期(瓜秧、小瓜、大瓜)不同背景(人物、菜地、抠图)
2023-01-18 01:47:22 372
原创 [可解释机器学习]Task08:学习总结
代码本身是有个大逻辑的,在阅读完一块代码时,抓住其逻辑,然后记一下关键的引用方法key。首先是对面不熟悉的代码自己敲,重点:自己敲 + 思考。
2022-12-26 18:24:24 125
原创 [Pytorch] 20天吃掉那只Pytorch
使用Pytorch通常有三种方式构建模型:使用 nn.Sequential按层顺序构建模型,继承 nn.Module基类构建自定义模型,继承 nn.Module基类构建模型并辅助应用模型容器进行封装。此处选择使用最简单的 nn.Sequential,按层顺序模型。print(net)
2022-12-26 00:02:53 634
原创 [可解释机器学习]Task07:LIME、shap代码实战
本文主要演示了对shap、LIME两个工具包的使用shap是一种解释任何机器学习模型输出的博弈论方法,它利用博弈论中的经典Shapley值及其相关扩展将最优信贷分配与局部解释联系起来。LIME帮助解释学习模型正在学习什么以及为什么他们以某种方式预测。目前支持对表格的数据,文本分类器和图像分类器的解释。
2022-12-25 09:38:51 3604 1
原创 [可解释机器学习]Task06:LIME算法学习
LIME是一种模块化和可扩展的方法,可以对任何模型做可解释性分析的预测。还引入了SP-LIME,这是一种选择代表性和非冗余预测的方法,为用户提供了模型的全局视图。论文中实验表明,解释对于文本和图像领域中与信任相关的任务中的各种模型都很有用,可供非专业人士使用。比较麻烦,因为要对待测数据进行扰动,RGB三个通道的像素矩阵很难在像素层面上进行扰动,得自己设计一套扰动的范式。把模型预测的结果作为标注 ,扰动的样本作为特征,去训练一个可解释的模型。得到了每一个特征的重要性可以分析出可解释分析的结果。
2022-12-24 00:32:44 1601 1
原创 [可解释学习]Tasko5:【代码实战】CAM、Captum
绿色最深的区域为酒瓶对应的区域,证明酒瓶区域对模型预测为wine_bottle的影响最大,如果抹掉该区域,会对模型预测为wine_bottle 的概率产生较大负面影响。从图中可以看出,绿色最深的区域为显示器对应的区域,证明显示器区域对模型预测为tv_monitor的影响最大,如果抹掉该区域,会对模型预测为tv_monitor的概率产生较大负面影响。背景区域的影响较小。在输入图像上,用遮挡滑块,滑动遮挡不同区域,探索哪些区域被遮挡后会显著影响模型的分类决策。
2022-12-22 01:13:36 2033
原创 Python编程:从入门到实践中第十五章的最后一题
我是个python入门小白,然后最后一题无标准答案,我的方法是可以属于操作的(但肯定还有更清晰的办法),用Matplotlib库模拟掷骰子是参照了一个大佬的方法(链接附在代码下了),用Plotly模拟随机漫步则是自己看了一些别的文章摸索出来的。第一个是用Matplotlib库模拟掷骰子##使用Matplotlib模拟掷骰子#从使用Plotly库改用Matplotlib库import matplotlib.pyplot as pltfrom matplotlib.ticker import M
2021-06-30 14:57:16 209
空空如也
python编程中问题,求帮助
2021-06-28
Python返回上步操作
2021-06-17
TA创建的收藏夹 TA关注的收藏夹
TA关注的人