机器学习(一)K-近邻

K-近邻算法介绍

K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法。

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

K-近邻算法实现过程

1)计算已知类别数据集中的点与当前点之间的距离

2)按距离递增次序排序

3)选取与当前点距离最小的k个点

4)统计前k个点所在的类别出现的频率

5)返回前k个点出现频率最高的类别作为当前点的预测分类

K-近邻算法的距离公式

(1)欧式距离:
欧氏距离(Euclidean Distance)是最容易直观理解的距离度量方法,我们小学、初中和高中接触到的两个点在空间中的距离一般都是指欧氏距离。
在这里插入图片描述
(2)曼哈顿距离
在曼哈顿街区要从一个十字路口开车到另一个十字路口,驾驶距离显然不是两点间的直线距离。这个实际驾驶距离就是“曼哈顿距离(Manhattan Distance)”。曼哈顿距离也称为“城市街区距离”(City Block distance)。
在这里插入图片描述
在这里插入图片描述
(3)契比雪夫距离
国际象棋中,国王可以直行、横行、斜行,所以国王走一步可以移动到相邻8个方格中的任意一个。国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?这个距离就叫切比雪夫距离(Chebyshev Distance)
在这里插入图片描述
(4) 闵可夫斯基距离
闵氏距离(Minkowski Distance)不是一种距离,而是一组距离的定义,是对多个距离度量公式的概括性的表述。

两个n维变量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

image-20190225182628694

其中p是一个变参数:

当p=1时,就是曼哈顿距离;

当p=2时,就是欧氏距离;

当p→∞时,就是切比雪夫距离。

根据p的不同,闵氏距离可以表示某一类/种的距离。

1 闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离,都存在明显的缺点:

e.g. 二维样本(身高[单位:cm],体重[单位:kg]),现有三个样本:a(180,50),b(190,50),c(180,60)。

a与b的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c的闵氏距离。但实际上身高的10cm并不能和体重的10kg划等号。

2 闵氏距离的缺点:

​ (1)将各个分量的量纲(scale),也就是“单位”相同的看待了;

​ (2)未考虑各个分量的分布(期望,方差等)可能是不同的。

K值选择

K值过小:容易受到异常点的影响
k值过大:受到样本均衡的问题

  1. 选择较小的K值,就相当于用较小的领域中的训练实例进行预测,
    “学习”近似误差会减小,只有与输入实例较近或相似的训练实例才会对预测结果起作用,与此同时带来的问题是“学习”的估计误差会增大,
    换句话说,K值的减小就意味着整体模型变得复杂,容易发生过拟合;
  2. 选择较大的K值,就相当于用较大领域中的训练实例进行预测,
    其优点是可以减少学习的估计误差,但缺点是学习的近似误差会增大。这时候,与输入实例较远(不相似的)训练实例也会对预测器作用,使预测发生错误。
    且K值的增大就意味着整体的模型变得简单。
  3. K=N(N为训练样本个数),则完全不足取,
    因为此时无论输入实例是什么,都只是简单的预测它属于在训练实例中最多的类,模型过于简单,忽略了训练实例中大量有用信息。
    在实际应用中,K值一般取一个比较小的数值,例如采用交叉验证法(简单来说,就是把训练数据在分成两组:训练集和验证集)来选择最优的K值。

kd树实现搜索的过程

背景:实现k近邻算法时,主要考虑的问题是如何对训练数据进行快速k近邻搜索。
这在特征空间的维数大及训练数据容量大时尤其必要。
k近邻法最简单的实现是线性扫描(穷举搜索),即要计算输入实例与每一个训练实例的距离。计算并存储好以后,再查找K近邻。当训练集很大时,计算非常耗时。
为了提高kNN搜索的效率,可以考虑使用特殊的结构存储训练数据,以减小计算距离的次数。

kd树:为了避免每次都重新计算一遍距离,算法会把距离信息保存在一棵树里,这样在计算之前从树里查询距离信息,尽量避免重新计算。其基本原理是,如果A和B距离很远,B和C距离很近,那么A和C的距离也很远。有了这个信息,就可以在合适的时候跳过距离远的点。

(1)构造根结点,使根结点对应于K维空间中包含所有实例点的超矩形区域;

(2)通过递归的方法,不断地对k维空间进行切分,生成子结点。在超矩形区域上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的坐标轴,将当前超矩形区域切分为左右两个子区域(子结点);这时,实例被分到两个子区域。

(3)上述过程直到子区域内没有实例时终止(终止时的结点为叶结点)。在此过程中,将实例保存在相应的结点上。

(4)通常,循环的选择坐标轴对空间切分,选择训练实例点在坐标轴上的中位数为切分点,这样得到的kd树是平衡的(平衡二叉树:它是一棵空树,或其左子树和右子树的深度之差的绝对值不超过1,且它的左子树和右子树都是平衡二叉树)。

KD树中每个节点是一个向量,和二叉树按照数的大小划分不同的是,KD树每层需要选定向量中的某一维,然后根据这一维按左小右大的方式划分数据。在构建KD树时,关键需要解决2个问题:

(1)选择向量的哪一维进行划分;

(2)如何划分数据;

第一个问题简单的解决方法可以是随机选择某一维或按顺序选择,但是更好的方法应该是在数据比较分散的那一维进行划分(分散的程度可以根据方差来衡量)。

第二个问题中,好的划分方法可以使构建的树比较平衡,可以每次选择中位数来进行划分。

KNeighborsClassifier实现分类

from sklearn.neighbors import KNeighborsClassifier
x = [[39,0,31],[3,2,65],[2,3,55],[9,38,2],[8,34,17],[5,2,57],[21,17,5],[45,2,9]]
y = [0,1,2,2,2,2,1,1]
# 实例化API
estimator = KNeighborsClassifier(n_neighbors=1)
# 使用fit方法进行训练
estimator.fit(x, y)

# 预测
ret=estimator.predict([[23,3,17]])
print(ret)

K-近邻算法的优缺点

优点:
(1)简单有效
(2)重新训练的代价低
(3)适合类域交叉样本
(4)适合样本容量比较大的类域自动分类

缺点:
(1)惰性学习
(2)类别评分不是规格化
(3)输出可解释性不强
(4)对不均衡的样本不擅长
(5)计算量较大

交叉验证

交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成4份,其中一份作为验证集。然后经过4次(组)的测试,每次都更换不同的验证集。即得到4组模型的结果,取平均值作为最终结果。又称4折交叉验证。作用是为了让被评估的模型更加准确可信。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值