使用PyTorch训练一个图像分类器

原文: TRAINING A CLASSIFIER

翻译: Jerry

日期: 2019-01-23

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

print("torch: %s" % torch.__version__)
print("tortorchvisionch: %s" % torchvision.__version__)
print("numpy: %s" % np.__version__)

Out:

torch: 1.0.0
tortorchvisionch: 0.2.1
numpy: 1.15.4

数据从哪儿来?

通常来说,你可以通过一些python包来把图像、文本、音频和视频数据加载为numpy array。然后将其转换为torch.*Tensor

  • 图像。Pillow、OpenCV是用得比较多的
  • 音频。scipy和librosa
  • 文本。纯Python或者Cython就可以完成数据加载,可以在NLTK和SpaCy找到数据

对于计算机视觉而言,我们有torchvision包,它可以用来加载一下常用数据集如Imagenet、CIFAR10、MINIST等等,也有一些常用的为图像准备数据转换例如torchvision.datasetstorch.utils.data.DataLoader

这次的教程中,我们使用CIFAR10数据集,他有‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’这几个类别的图像。图像大小都是3x32x32的。也就是说,图像都是三通道的,每一张图的尺寸都是32x32。

cifar 10

训练一个图像分类器

步骤如下:

  1. 使用torchvision加载、归一化训练集和测试集
  2. 定义卷积神经网络
  3. 定义损失函数
  4. 使用训练集训练网络
  5. 使用测试集测试网络

1. 加载、归一化CIFAR10

我们可以使用torchvision很轻松的完成

torchvision的数据集是基于PILImage的,数值是[0, 1],我们需要将其转成范围为[-1, 1]的Tensor

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, 
                                       download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, 
                                         shuffle=True, num_workers=4)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, 
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, 
                                         shuffle=True, num_workers=4)
classes = ('plane', 'car', 'bird', 'cat', 
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

Out:

Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
Files already downloaded and verified

让我们来看看训练集的图片

# 显示一张图片
def imshow(img):
    img = img / 2 + 0.5     # 逆归一化
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


# 任意地拿到一些图片
dataiter = iter(trainloader)
images, labels = dataiter.next()

# 显示图片
imshow(torchvision.utils.make_grid(images))
# 显示类标
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

Out:

在这里插入图片描述

truck   dog  ship   dog

2. 定义卷积神经网络

可以直接复制神经网络的代码,修改里面的几层即可。

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
        
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()

3. 定义损失函数和优化器

使用多分类交叉熵损失函数,和带有momentum的SGD作为优化器

import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=1e-3, momentum=0.9)

4. 训练网络

我们直接使用循环语句遍历数据集即可完成训练

nums_epoch = 2
for epoch in range(nums_epoch):
    _loss = 0.0
    for i, (inputs, labels) in enumerate(trainloader, 0):
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        
        _loss += loss.item()
        if i % 2000 == 1999:    # 每2000步打印一次损失值
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, _loss / 2000))
            _loss = 0.0

print('Finished Training')

Out:

[1,  2000] loss: 1.178
[1,  4000] loss: 1.200
[1,  6000] loss: 1.168
[1,  8000] loss: 1.175
[1, 10000] loss: 1.185
[1, 12000] loss: 1.165
[2,  2000] loss: 1.073
[2,  4000] loss: 1.066
[2,  6000] loss: 1.100
[2,  8000] loss: 1.107
[2, 10000] loss: 1.083
[2, 12000] loss: 1.103
Finished Training

5. 测试网络

这个网络已经训练了两个epoch,我们现在来看看这个网络是不是学到了一些什么东西。

我们让这个神经网络预测几张图片,看看它的答案与真实答案的差别。

下面我们选取一些测试数据集中的数据,看看他们的真实标签。

# 展示测试数据集
dataiter = iter(testloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print('GraoundTruth: ', ' '.join(['%5s' % classes[labels[j]] for j in range(4)]))

Out:

在这里插入图片描述

GraoundTruth:   ship  ship  deer  ship

接着我们让神经网络来给出预测标签

神经网络的输出是10个信号值,信号值最高的那个神经元表示整个网络的预测值,所以我们需要拿到信号最强的那个节点的索引值

# 展示预测值
outputs = net(images)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join(['%5s' % classes[predicted[j]] for j in range(4)]))

Out:

Predicted:    car  ship horse  ship

下面我们对整个测试集做一次评估:

# 评估测试数据集
correct, total = 0, 0
with torch.no_grad():
    for images, labels in testloader:
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        total += labels.size(0)
        correct += (labels == predicted).sum().item()
    
print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

Out:

Accuracy of the network on the 10000 test images: 58 %

整个结果比随机猜要好得多(随机猜是10%的概率)。看来我们的神经网络还是学到了点东西。

下面我们来看看它在哪一个类别的分类上做得最好:

# 按类标评估
n_classes = len(classes)
class_correct, class_total = [0]*n_classes, [0]* n_classes

with torch.no_grad():
    for images, labels in testloader:
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        is_correct = (labels == predicted).squeeze()
        for i in range(len(labels)):
            label = labels[i]
            class_total[label] += 1
            class_correct[label] += is_correct[i].item()

for i in range(n_classes):
    print('Accuracy of %5s: %.2f %%' % (
        classes[i], 100.0 * class_correct[i] / class_total[i]
    ))

Out:

Accuracy of plane: 67.00 %
Accuracy of   car: 71.50 %
Accuracy of  bird: 55.20 %
Accuracy of   cat: 45.60 %
Accuracy of  deer: 38.20 %
Accuracy of   dog: 47.00 %
Accuracy of  frog: 78.80 %
Accuracy of horse: 55.90 %
Accuracy of  ship: 72.70 %
Accuracy of truck: 57.50 %

在GPU上训练

就像把Tensor从CPU转移到GPU一样,神经网络也可以转移到GPU上

首先需要检查是否有可用的GPU

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 假设我们在支持CUDA的机器上,我们可以打印出CUDA设备:

print(device)

Out:

cuda:0

我们假设device已经是CUDA设备了

下面命令将递归的将所有模块和参数、缓存转移到CUDA设备上去

net.to(device)

Out:

Net(
  (conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

注意,在训练过程中的传入输入数据时,也需要转移到GPU上

并且,需要重新实例化优化器,否则会报错

inputs, labels = inputs.to(device), labels.to(device)

练习:尝试增加神经网络的宽度。第一个nn.Conv2d的第二个参数和第二个nn.Conv2d的第一个参数的值必须一样。看看会有什么样的效果。

  • 3
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch一个基于 Python 的科学计算库,它可以帮助我们轻松地构建和训练人工智能模型。在 PyTorch 中,我们可以使用卷积神经网络(Convolutional Neural Network,CNN)来进行图像识别分类任务。 下面是一个简单PyTorch 训练图像识别分类模型的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms # 定义数据预处理 transform = transforms.Compose([ transforms.Resize((32, 32)), # 将图片大小调整为 32x32 transforms.ToTensor(), # 将图片转换为张量 transforms.Normalize((0.5,), (0.5,)) # 标准化张量 ]) # 加载数据集 train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() # 定义损失函数和优化 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练模型 train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True, num_workers=2) for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') # 测试模型 test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False, num_workers=2) correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ``` 这段代码中,首先我们定义了数据预处理方式。对于 MNIST 数据集,我们将图片大小调整为 32x32,然后将图片转换为张量,并进行标准化处理。 接着,我们加载 MNIST 数据集,并定义了一个卷积神经网络模型。这个模型包含两个卷积层和三个全连接层,其中每个卷积层后面跟着一个最大池化层。 然后,我们定义了损失函数和优化。在这个示例中,我们使用交叉熵损失函数和随机梯度下降(SGD)优化。 最后,我们使用 DataLoader 对数据集进行批量加载,训练模型。在每个 epoch 结束后,我们都会计算一下当前的损失值,并输出。训练完成后,我们使用测试集对模型进行测试,并计算出模型的准确率。 这是一个简单PyTorch 训练图像识别分类模型的示例,你可以根据自己的需求和数据集进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值