《概率论与数理统计》-第二章 随机变量及其分布-第一节 离散型随机变量及其分布-笔记

本文详细介绍了离散型随机变量的概念,包括其定义、常见分布如0-1分布、二项分布、泊松分布和几何分布,并阐述了分布函数的定义、性质及其在概率论中的重要性。通过对各种分布的解析,帮助读者理解随机变量的概率分布规律。
摘要由CSDN通过智能技术生成

第一节 离散型随机变量及其分布

随机变量
定义

E E E是随机试验,它的样本空间是 U = { e } U=\{e\} U={e}。如果对于每一个 e ∈ U e\in U eU,有一个实数 X ( e ) X(e) X(e)与之对应,这样就得到一个定义在 U U U上的单值实值函数 X ( e ) X(e) X(e),称 X ( e ) X(e) X(e)随机变量

随机变量
离散型
非离散型
连续型
其他
概率分布律

表示离散型随机变量 X X X的所有不同取值 x i ( i = 1 , 2 , ⋯   , n , ⋯   ) x_i(i=1,2,\cdots,n,\cdots) xi(i=1,2,,n,)与相应概率的关系式 P { X = x i } = p i ( i = 1 , 2 , ⋯   , n , ⋯   ) P\{X=x_i\}=p_i(i=1,2,\cdots,n,\cdots) P{X=xi}=pi(i=1,2,,n,) X ∼ ( x 1 ⋯ x i ⋯ p i ⋯ p i ⋯ ) X\sim\begin{pmatrix} x_1\cdots x_i\cdots \\ p_i\cdots p_i\cdots\end{pmatrix} X(x1xipipi)称为离散型随机变量的概率分布律

常用离散型随机变量及其分布律
  • (0-1)分布(又称两点分布)

    P { X = k } = p k ( 1 − p ) 1 − k    ( k = 0 , 1 ; 0 < p < 1 ) P\{X=k\}=p^k(1-p)^{1-k}\ \ (k=0,1;0<p<1) P{X=k}=pk(1p)1k  (k=0,1;0<p<1)

  • 二项分布

    P { X = k } = C n k p k ( 1 − p ) n − k = n ! k ! ( n − k ) ! p k q n − k P\{X=k\}=C_n^kp^k(1-p)^{n-k}=\frac{n!}{k!(n-k)!}p^kq^{n-k} P{X=k}=Cnkpk(1p)nk=k!(nk)!n!pkqnk

  • 泊松(Poisson)分布

    P { X = k } = λ k k ! e − λ    ( k = 0 , 1 , 2 , ⋯   ) ( λ > 0 ) P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda}\ \ (k=0,1,2,\cdots)(\lambda>0) P{X=k}=k!λkeλ  (k=0,1,2,)(λ>0)

    n n n比较大,有 C n k p k ( 1 − p ) n − k ≈ λ k k ! e − λ C_n^kp^k(1-p)^{n-k}\approx\frac{\lambda^k}{k!}e^{-\lambda} Cnkpk(1p)nkk!λkeλ成立。其中 λ = n p \lambda=np λ=np

  • 几何分布 进行重复独立试验,每次试验事件 A A A发生的概率为 p ( 0 < p < 1 ) p(0<p<1) p(0<p<1),设 X X X表示事件 A A A首次发生时的试验次数,则称 X X X服从几何分布

    P { X = k } = p ( 1 − p ) k − 1 ( k = 1 , 2 , ⋯   , n , ⋯   ) P\{X=k\}=p(1-p)^{k-1}(k=1,2,\cdots,n,\cdots) P{X=k}=p(1p)k1(k=1,2,,n,)

  • 超几何分布 一个口袋里装有 a a a个红球、 b b b个白球,从中任取 m m m个球 ( 1 ≤ m ≤ a + b ) (1\leq m\leq a+b) (1ma+b),设 X X X表示从中取出的红球的个数,则称 X X X服从超几何分布

    P ( X = k ) = C a k C b m − k C a + b m ( 1 ≤ k ≤ m i n { m , a } ) P(X=k)=\frac{C_a^kC_b^{m-k}}{C_{a+b}^m}(1\leq k\leq min\{m,a\}) P(X=k)=Ca+bmCakCbmk(1kmin{m,a})

分布函数
定义

对任意试试 x x x,随机变量 X X X的取值不超过 x x x的累计概率 P { X ≤ x } P\{X\leq x\} P{Xx}是实数 x x x的函数,称为随机变量 X X X的累积分布函数(cumulative distrubution function)或累积概率,简称 X X X分布函数,记作 F X ( x ) F_X(x) FX(x)或简记作 F ( x ) F(x) F(x),即 F ( x ) = P { X ≤ x } F(x)=P\{X\leq x\} F(x)=P{Xx}

F ( x ) F(x) F(x)是随机变量 X X X分布函数,对任意实数 x 1 , x 2 ( x 1 < x 2 ) x_1,x_2(x1<x_2) x1,x2(x1<x2),有 P { x 1 < X ≤ x 2 } = P { X ≤ x 2 } − P { X ≤ x 1 } = F ( x 2 ) − F ( x 1 ) P\{x_1<X\leq x_2\}=P\{X\leq x_2\}-P\{X\leq x_1\}=F(x_2)-F(x_1) P{x1<Xx2}=P{Xx2}P{Xx1}=F(x2)F(x1)

即分布函数 F ( x ) F(x) F(x)可以表示随机变量 X X X落在任一区间 ( x 1 , x 2 ] (x_1,x_2] (x1,x2]上的概率,所以分布函数可以完整地描述随机变量概率分布的规律性。

性质
  • 0 ≤ F ( x ) ≤ 1    ( − ∞ < x < + ∞ ) 0\leq F(x)\leq1\ \ (-\infty<x<+\infty) 0F(x)1  (<x<+)
  • x 1 < x 2 x_1<x_2 x1<x2,则 F ( x 1 ) ≤ F ( x 2 ) F(x_1)\leq F(x_2) F(x1)F(x2),即任一分布函数都是单调不减的
  • F ( − ∞ ) = lim ⁡ x → − ∞ F ( x ) = 0 F(-\infty)=\lim_{x \to -\infty}F(x)=0 F()=limxF(x)=0 F ( + ∞ ) = lim ⁡ x → + ∞ F ( x ) = 1 F(+\infty)=\lim_{x\to+\infty}F(x)=1 F(+)=limx+F(x)=1
  • 右连续,即 lim ⁡ x → x 0 + 0 F ( x ) = F ( x 0 ) \lim_{x\to x_0+0}F(x)=F(x_0) limxx0+0F(x)=F(x0)

此系列更多章节持续更新

打字不易,转载请附上原文链接哦~
Tisfy:https://LetMeFly.blog.csdn.net/article/details/115314085

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tisfy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值