什么是积分图像?为什么可以加速目标检测?
积分图像的想法很巧妙,这个链接讲得很好,就不重复了。结论就是:
The Integral Image plays a big role in reducing the amount of time and processing power required to calculate and evaluate hundreds of thousands of features in real-time. It’s clever shortcuts like this that made this object detection possible on hardware 20 years ago. It’s simply brilliant.
分享一篇论文,《链接》
这篇文章先计算导向梯度图(oriented gradients map)的积分图,这些积分图被保存于内存中。HOG特征就是用这些积分图计算的。这是查表的方式,只要找到积分图中四个坐标通过加减就能得到。之后就是一般的利用HOG特征训练分类器以进行目标检测的部分,作者没有重复介绍。
这不是一篇正式的文章,作者在致谢中分享是多年前工作的brief review。最后,作者给出了一个视频demo, 链接在这里,确实检测速度很快!
最近也看到HOG特征用于图像重建,我开始思考神经网络对于特征选择时候真的需要那么多层?相比之下,HOG等特征就是不依赖于学习的,而且根据视觉神经科学的研究,大脑视觉神经细胞对边缘,纹理等结构特征的提取是先天的,分类才是需要学习的。识别/检测物体其实对于人而言,就说小孩子吧,他一看就知道是啥,只不过不能命名。这样看,视觉神经网络不是冗余的,但是高效的可解释的,不同层次功能性明确。再者,特征本就是稀疏的,识别/检测物体其实只需要简单的关键边缘。最近这个对神经网络的反思系列视频让我羞愧,确实是跟着别人跑,并没有独立思考。