Max Sum(最大子序列和)(经典dp)

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/ToBeYours/article/details/79042010
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
 

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
 

Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
 

Sample Output
Case 1: 14 1 4 Case 2: 7 1 6



#include<stdio.h>
int main()
{
    int n,m,i,j,end,begin,temp,max;
    int e,f,k,flag=1;
    int a[100005];
    scanf("%d",&n);
    k=1;
    while(n--)
    {
        begin=end=0;

        scanf("%d",&m);
        for(i=1;i<=m;i++)
        {
            scanf("%d",&a[i]);
        }
        temp=0;
        max=-999999;
        begin=e=1;
        f=1;

        for(i=1;i<=m;i++)
        {
            temp+=a[i];

            if(temp>max)
            {
                e=begin;
                f=i;
                max=temp;
            }


            if(temp<0)
            {
                begin=i+1;
                temp=0;
            }



        }
        printf("Case %d:\n",k++);
        printf("%d %d %d\n",max,e,f);
        if(n!=0)
            printf("\n");
    }
    return 0;
}


展开阅读全文

没有更多推荐了,返回首页