# Best Cow Fences（二分）

### 问题 K: Best Cow Fences

Farmer John's farm consists of a long row of N (1 <= N <= 100,000)fields. Each field contains a certain number of cows, 1 <= ncows <= 2000.
FJ wants to build a fence around a contiguous group of these fields in order to maximize the average number of cows per field within that block. The block must contain at least F (1 <= F <= N) fields, where F given as input.
Calculate the fence placement that maximizes the average, given the constraint.

* Line 1: Two space-separated integers, N and F.
* Lines 2..N+1: Each line contains a single integer, the number of cows in a field. Line 2 gives the number of cows in field 1,line 3 gives the number in field 2, and so on.

* Line 1: A single integer that is 1000 times the maximal average.Do not perform rounding, just print the integer that is 1000*ncows/nfields.

10 6
6
4
2
10
3
8
5
9
4
1


6500


1、首先二分区间的平均值为多少，让数组中的所有数都减去平均值。

2、再从数组中找出一段长度大于等于F的区间，看区间和是否会大于等于0。

3、要找这段区间需要维护左端点最小值，枚举右端点。先把减去平均值的数组求一个前缀和，再设K，对于当前枚举到的 i 位置，我们想让a[i]-a[k]，尽量大，那么a[k]，就必须尽量小，所以一直维护最小值就可以了minn=（minn，sum[i-m]）。