关于IP3空间与IP2空间的一点理解

计算机视觉中的多视图几何中说到:在IP3-(0,0,0)T中的矢量等价类的集合组成射影空间IP2

以点矢量来理解,IP3中的每个矢量对应着IP2中的一个点,其中(0,0,0)不与任何直线对应,被排除在外。此外有两个特殊情况:

1.IP3中的过原点的直线都被分为两段

2.IP3中的z=0的平面对应IP2中的无限远直线

以线矢量来理解,IP3的每个矢量对应着IP2中的一条线,很难在大脑中复原这个模型,线与线之间也会有交叉重叠,但是最终会将整个IP2平面覆盖,直观上不好理解,也没办法得出一些有用结论

而且(0,0,c)这样形式的矢量是没办法对应到IP2中的。

所以最后我就以点矢量去理解两个空间的对应关系了,如果有关于这个关系不同的理解,希望大佬可以写在评论里,写写。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值