赋能医学影像,AI助力智能化辅助诊断,基于YOLOv9【yolov9/t/s/m/c/e】+GELAN【gelan/t/s/m/c/e】全系列参数模型构建磁共振成像CT扫描场景下医学图像脑肿瘤检测系统

在医学的浩瀚星空中,肿瘤与癌症等复杂疾病如同夜空中最难以捉摸的星辰,它们的发现与诊断往往依赖于高精度、高灵敏度的医学影像技术,如核磁共振(MRI)和计算机断层扫描(CT)等。这些技术如同现代医学的“火眼金睛”,能够穿透人体,揭示出隐藏在内部的疾病秘密。然而,传统的医学影像分析却面临着诸多挑战:高度依赖专家的主观判断、经验门槛高、分析过程耗时耗力,以及时效性不足等问题,这些都成为了制约医疗服务质量与效率提升的瓶颈。

随着人工智能(AI)技术的飞速发展,一场深刻的医疗变革正在悄然发生。AI以其强大的数据处理能力、学习能力和模式识别能力,为医学影像分析带来了前所未有的机遇。在医学影像领域,AI技术的应用不仅有望解决上述难题,更将推动疾病诊断向更加精准、高效、智能的方向迈进。医学影像数据是医疗大数据的重要组成部分,其海量、多维、复杂的特点为AI模型的训练提供了丰富的素材。通过深度学习等先进算法,AI可以从海量的影像数据中学习并提取出疾病特有的特征模式,进而构建出智能化的检测识别模型。这些模型能够自动分析影像,快速准确地识别出异常区域,为医生提供初步的诊断建议,极大地提高了诊断的效率和准确性。AI在医学影像分析中的应用,使得医生能够借助智能系统快速筛选出疑似病例,减轻了他们的工作负担,同时也降低了人为因素导致的误诊和漏诊风险。医生可以将更多精力集中在复杂病例的深入分析和治疗方案的制定上,从而提高了整体医疗服务的质量。此外,AI系统的实时性和远程服务能力,使得患者能够更快地获得诊断结果,尤其是对于偏远地区的患者而言,这无疑是巨大的福音。

本文从这样的背景出发,想要基于基础的实验尝试来开发构建医学影像场景下的智能化检测识别模型,在前面的系列博文中我们已经进行了相关的开发实践,感兴趣的话可以自行移步阅读即可:

《赋能医学影像,AI助力智能化辅助诊断,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建磁共振成像、CT扫描场景下医学图像脑肿瘤检测识别系统》

《赋能医学影像,AI助力智能化辅助诊断,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建磁共振成像、CT扫描场景下医学图像脑肿瘤检测识别系统》

《赋能医学影像,AI助力智能化辅助诊断,基于YOLOv7全系列【tiny/l/x】参数系列模型开发构建磁共振成像、CT扫描场景下医学图像脑肿瘤检测识别系统》

《赋能医学影像,AI助力智能化辅助诊断,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建磁共振成像、CT扫描场景下医学图像脑肿瘤检测识别系统》

本文主要是采用经典的YOLOv9+GELAN全系列的参数模型开发开发构建对比模型。

首先看下实例效果:

实例数据如下:

关于YOLOv9的论文相关的介绍可以看这里:

《太卷了,目标检测新成员——YOLOv9: Learning What You Want to LearnUsing Programmable Gradient Information他来了》

如果想要基于YOLOv9从零开始开发构建自己的个性化目标检测系统,可以参照这里:

《基于YOLO家族最新模型YOLOv9开发构建自己的个性化目标检测系统从零构建模型完整训练、推理计算超详细教程【以自建数据酸枣病虫害检测为例】》

YOLOv9的作者人为很多模型设计过程中现有的方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,会丢失大量信息。目前,可以缓解这一现象的主要方法为:(1)可逆架构的使用:使用重复输入数据并以显式方式保持输入数据的信息;(2)掩码建模的使用:利用重构损失并采用隐式方式来最大化提取的特征并保留输入信息;以及(3)深监督概念的引入:使用未丢失太多重要信息的浅层特征预先建立从特征到目标的映射,以确保重要信息能够传递到更深的层次。然而,上述方法在训练过程和推理过程中存在不同的缺点。例如,可逆架构需要额外的层来组合重复馈送的输入数据,这将显著增加推理成本。此外,由于输入数据层到输出层不能有太深的路径,这种限制将使得在训练过程中对高阶语义信息的建模变得困难。至于掩码建模,其重构损失有时会与目标损失冲突。此外,大多数掩码机制还会与数据产生不正确的关联。对于深监督机制,它将产生误差积累,如果浅监督在训练过程中丢失信息,那么后续层将无法检索到所需的信息。上述现象在困难任务和小模型上将更为显著。所以作者深入研究数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数进而提出了可编程梯度信息(PGI)以应对深度网络实现多个目标所需的各种变化。PGI可以为目标任务提供完整的输入信息来计算目标函数,从而获得可靠的梯度信息来更新网络权重。此外,还设计了一种新的基于梯度路径规划的轻量级网络架构——广义高效层聚合网络(GELAN)。GELAN的架构证实了PGI在轻量级模型上取得了卓越的成果。
YOLOv9贡献总结如下:
1.我们从可逆函数的角度对现有的深度神经网络架构进行了理论分析,并通过这个过程成功地解释了许多过去难以解释的现象。在此基础上,我们还设计了PGI和辅助可逆分支,并取得了良好的效果。
2.我们设计的PGI解决了深度监控只能用于极深度神经网络架构的问题,从而使新的轻量级架构能够真正应用于日常生活。
3.我们设计的GELAN仅使用传统卷积,比基于最先进技术的深度卷积设计实现了更高的参数使用率,同时显示出轻、快、准确的巨大优势。
4.将所提出的PGI和GELAN相结合,YOLOv9在MS COCO数据集上的目标检测性能在各个方面都大大超过了现有的实时目标检测器。

这里我们一共应用开发了十二款模型,分别是GELAN系列的:gelan、gelan-t、gelan-s、gelan-m、gelan-c、gelan-e和YOLOv9系列的:yolov9、yolov9-t、yolov9-s、yolov9-m、yolov9-c、yolov9-e,这里就不再一一给出来所有模型的模型文件了,仅以gelan和yolov9为例。

【gelan】

# YOLOv9
 
# parameters
nc: 2   # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()
 
# anchors
anchors: 3
 
# gelan backbone
backbone:
  [
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 0-P1/2
   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 2
   # avg-conv down
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 4
   # avg-conv down
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 6
   # avg-conv down
   [-1, 1, Conv, [512, 3, 2]],  # 7-P5/32
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 8
  ]
 
# gelan head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 9
   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 12
   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 15 (P3/8-small)
   # avg-conv-down merge
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 12], 1, Concat, [1]],  # cat head P4
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 18 (P4/16-medium)
   # avg-conv-down merge
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 9], 1, Concat, [1]],  # cat head P5
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 21 (P5/32-large)
   # detect
   [[15, 18, 21], 1, DDetect, [nc]],  # Detect(P3, P4, P5)
  ]

【yolov9】

# YOLOv9
 
# parameters
nc: 2   # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()
 
# anchors
anchors: 3
 
# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],  
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4
   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3
   # conv down
   [-1, 1, Conv, [256, 3, 2]],  # 4-P3/8
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5
   # conv down
   [-1, 1, Conv, [512, 3, 2]],  # 6-P4/16
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7
   # conv down
   [-1, 1, Conv, [512, 3, 2]],  # 8-P5/32
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9
  ]
 
# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 10
   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13
   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)
   # conv-down merge
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 13], 1, Concat, [1]],  # cat head P4
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)
   # conv-down merge
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)
   # routing
   [5, 1, CBLinear, [[256]]], # 23
   [7, 1, CBLinear, [[256, 512]]], # 24
   [9, 1, CBLinear, [[256, 512, 512]]], # 25
   # conv down
   [0, 1, Conv, [64, 3, 2]],  # 26-P1/2
   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 27-P2/4
   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28
   # conv down fuse
   [-1, 1, Conv, [256, 3, 2]],  # 29-P3/8
   [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31
   # conv down fuse
   [-1, 1, Conv, [512, 3, 2]],  # 32-P4/16
   [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34
   # conv down fuse
   [-1, 1, Conv, [512, 3, 2]],  # 35-P5/32
   [[25, -1], 1, CBFuse, [[2]]], # 36
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37
   # detect
   [[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]

这里我们主要开发实践了两组实验:

1、YOLOv9全系列参数模型的对比实验

2、YOLOv9全系列+Gelan全系列模型的对比实验

之所以这样对比,是因为本身YOLOv9就等价于Gelan+PGI,理论上来说专门提出来的PGI技术肯定是对原有模型有提升作用的,简单来理解就是YOLOv9全系列理论上应该是你开发项目的首选。

实验阶段我们保持了相同的参数设置,等待长时期的训练过程结束之后我们来对以上YOLOv9全系列六款不同参数量级的模型进行纵向的对比分析,如下:

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss】

Loss曲线反映了模型在训练过程中,损失函数值随迭代次数(或训练轮数)的变化情况。损失函数是用来估量模型的预测值f(x)与真实值y的不一致程度的函数,其值越小,表明模型预测能力越强,性能越好。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

完成第一组实验也就是YOLOv9全系列参数模型的对比分析可视化之后,接下来我们按照同样的参数配置完成GELAN全系列参数模型的开发训练,之后采用上述相同的方式来进行十二款模型的对比可视化,这里就不再赘述了,直接来看效果。

【F1值曲线】

【loss曲线】

【mAP0.5曲线】

【mAP0.5.:095曲线】

【Precision曲线】

【Recall曲线】

综合全系列十二款不同参数量级模型的开发实验对比结果来看:十二款不同参数量级的模型效果上没有呈现较为明显的间距,整体来说:t系列模型效果最差,s系列模型略优,yolov9和gelan系列居中,其余三个系列模型效果较为相近,综合参数量来考虑,这里我们考虑使用yolov9-m来作为线上推理模型。

接下来看下yolov9-m模型的详细情况。

【离线推理实例】

【热力图实例】

【Batch实例】

【混淆矩阵】

【F1值曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

时代的浪潮在滚滚向前,拥抱科技时代带来的领域变革。展望未来,随着AI技术的不断成熟和医学影像数据的持续积累,AI在医学影像分析中的应用将更加广泛和深入。我们可以预见,未来的医学影像分析将实现全自动化、智能化和个性化,为医生提供更加全面、精准的诊断支持。同时,AI还将与其他医疗技术如基因测序、机器人手术等相结合,共同推动医疗行业的全面升级和转型。AI技术正以前所未有的速度和力量改变着医学影像分析的面貌,为疾病的早期发现、精准诊断和治疗提供了强有力的支持。在这场医疗变革的浪潮中,我们有理由相信,AI将成为推动医学进步的重要力量,引领我们迈向一个更加健康、美好的未来。

  • 20
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值