在当今社会,火车作为大众出行的主流方式,其便捷性和高效性深受人们青睐。铁轨,作为火车行驶的基石,其铺设与维护的标准之严格,直接关系到列车运行的安全与稳定。然而,随着时间的推移以及自然环境的影响,铁轨难免会出现沉降、偏移等问题,这些潜在的安全隐患若不及时发现和处理,将对铁路交通构成严重威胁。传统上,铁轨的运维检修依赖于人工巡检,不仅成本高昂,且难以实现全天候监控,更难以应对日益增长的铁路网络维护需求。在此背景下,人工智能(AI)技术的引入,为铁轨运维带来了革命性的变革。
传统运维的挑战
传统的铁轨运维主要依赖于工程师团队,他们利用肉眼观察和特定的测量设备进行现场检查。这种方法不仅效率低下,而且在面对复杂多变的地理环境和气候条件时,往往力不从心。尤其是在偏远地区或恶劣天气下,人工巡检的难度和成本进一步增加,导致运维工作的及时性和有效性大打折扣。此外,随着铁路网络的迅速扩展,需要维护的铁轨里程数急剧增加,传统的人工巡检模式已难以满足日益增长的运维需求。
AI技术的崛起
随着人工智能技术的快速发展和广泛应用,越来越多的传统行业开始探索AI赋能的可能性。在铁路运维领域,AI模型的引入为解决传统运维难题提供了新思路。通过遍布铁道的线杆和电网,可以方便地安装摄像头设备,实现对铁轨状态的实时监控。这些摄像头采集的图像数据,经过专业团队的标注处理后,成为训练AI模型的重要素材。
基于这些真实场景数据开发的铁轨吻合自动检测模型,能够精准识别铁轨的异常情况,如沉降、偏移等。将这些模型部署在边缘端算力盒子中,即可实现对摄像头传入的视频流数据进行实时检测识别。这种全天候的计算能力,使得运维团队能够及时发现并预警潜在的安全隐患,大大缩短了响应时间,提高了运维效率。
智能运维的优势
AI赋能的铁轨运维模式,相较于传统方式,具有以下显著优势:
全天候监控:不受时间、天气等自然条件限制,实现24小时不间断监控,确保铁轨状态的实时掌握。
高效精准:AI模型能够快速准确地识别铁轨异常,减少误报和漏报,提高运维工作的针对性和有效性。
降低成本:自动化检测减少了人工巡检的频率和强度,降低了人力成本,同时提高了运维效率。
快速响应:一旦发现异常,预警信息可立即传达至运维平台,便于快速部署工程师团队进行定点精准作业。
本文就是在这样的思考背景下想要尝试从实验的角度开发构建铁路轨道场景下的铁轨偏移智能化检测系统,在前面的系列博文中我们已经进行了相应的开发实践,感兴趣的话可以自行移步阅读即可:
《AI赋能铁轨运维智能检测引领铁路安全新时代,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建铁路轨道场景下铁轨吻合偏移检测识别系统》
《AI赋能铁轨运维智能检测引领铁路安全新时代,基于YOLOv7全系列【tiny/l/x】参数模型开发构建铁路轨道场景下铁轨吻合偏移检测识别系统》
《AI赋能铁轨运维智能检测引领铁路安全新时代,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建铁路轨道场景下铁轨吻合偏移检测识别系统》
本文主要是想要基于YOLOv9全系列的模型来进行相应的开发实践,首先看下实例效果:
接下来看下实例数据:
关于YOLOv9的论文相关的介绍可以看这里:
《太卷了,目标检测新成员——YOLOv9: Learning What You Want to LearnUsing Programmable Gradient Information他来了》
如果想要基于YOLOv9从零开始开发构建自己的个性化目标检测系统,可以参照这里:
《基于YOLO家族最新模型YOLOv9开发构建自己的个性化目标检测系统从零构建模型完整训练、推理计算超详细教程【以自建数据酸枣病虫害检测为例】》
YOLOv9的作者人为很多模型设计过程中现有的方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,会丢失大量信息。目前,可以缓解这一现象的主要方法为:(1)可逆架构的使用:使用重复输入数据并以显式方式保持输入数据的信息;(2)掩码建模的使用:利用重构损失并采用隐式方式来最大化提取的特征并保留输入信息;以及(3)深监督概念的引入:使用未丢失太多重要信息的浅层特征预先建立从特征到目标的映射,以确保重要信息能够传递到更深的层次。然而,上述方法在训练过程和推理过程中存在不同的缺点。例如,可逆架构需要额外的层来组合重复馈送的输入数据,这将显著增加推理成本。此外,由于输入数据层到输出层不能有太深的路径,这种限制将使得在训练过程中对高阶语义信息的建模变得困难。至于掩码建模,其重构损失有时会与目标损失冲突。此外,大多数掩码机制还会与数据产生不正确的关联。对于深监督机制,它将产生误差积累,如果浅监督在训练过程中丢失信息,那么后续层将无法检索到所需的信息。上述现象在困难任务和小模型上将更为显著。所以作者深入研究数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数进而提出了可编程梯度信息(PGI)以应对深度网络实现多个目标所需的各种变化。PGI可以为目标任务提供完整的输入信息来计算目标函数,从而获得可靠的梯度信息来更新网络权重。此外,还设计了一种新的基于梯度路径规划的轻量级网络架构——广义高效层聚合网络(GELAN)。GELAN的架构证实了PGI在轻量级模型上取得了卓越的成果。
YOLOv9贡献总结如下:
1.我们从可逆函数的角度对现有的深度神经网络架构进行了理论分析,并通过这个过程成功地解释了许多过去难以解释的现象。在此基础上,我们还设计了PGI和辅助可逆分支,并取得了良好的效果。
2.我们设计的PGI解决了深度监控只能用于极深度神经网络架构的问题,从而使新的轻量级架构能够真正应用于日常生活。
3.我们设计的GELAN仅使用传统卷积,比基于最先进技术的深度卷积设计实现了更高的参数使用率,同时显示出轻、快、准确的巨大优势。
4.将所提出的PGI和GELAN相结合,YOLOv9在MS COCO数据集上的目标检测性能在各个方面都大大超过了现有的实时目标检测器。
训练数据配置文件内容如下:
# Dataset
path: ./dataset
train:
- images/train
val:
- images/test
test:
- images/test
# Classes
names: ['close', 'open']
这里我们一共应用开发了YOLOv9全系列六款模型,分别是:yolov9-t、yolov9-s、yolov9-m、yolov9、yolov9-c、yolov9-e和Gelan全系列六款模型,分别是:gelan-t、gelan-s、gelan-m、gelan、gelan-c、gelan-e共十二款不同量级的模型,这里就不再一一给出来所有模型的模型文件了,仅以最终选定的推理后端模型yolov9-m为例。
【yolov9-m】
# YOLOv9
# parameters
nc: 6 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()
# anchors
anchors: 3
# gelan backbone
backbone:
[
[-1, 1, Silence, []],
# conv down
[-1, 1, Conv, [32, 3, 2]], # 1-P1/2
# conv down
[-1, 1, Conv, [64, 3, 2]], # 2-P2/4
# elan-1 block
[-1, 1, RepNCSPELAN4, [128, 128, 64, 1]], # 3
# avg-conv down
[-1, 1, AConv, [240]], # 4-P3/8
# elan-2 block
[-1, 1, RepNCSPELAN4, [240, 240, 120, 1]], # 5
# avg-conv down
[-1, 1, AConv, [360]], # 6-P4/16
# elan-2 block
[-1, 1, RepNCSPELAN4, [360, 360, 180, 1]], # 7
# avg-conv down
[-1, 1, AConv, [480]], # 8-P5/32
# elan-2 block
[-1, 1, RepNCSPELAN4, [480, 480, 240, 1]], # 9
]
# elan head
head:
[
# elan-spp block
[-1, 1, SPPELAN, [480, 240]], # 10
# up-concat merge
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 7], 1, Concat, [1]], # cat backbone P4
# elan-2 block
[-1, 1, RepNCSPELAN4, [360, 360, 180, 1]], # 13
# up-concat merge
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 5], 1, Concat, [1]], # cat backbone P3
# elan-2 block
[-1, 1, RepNCSPELAN4, [240, 240, 120, 1]], # 16
# avg-conv-down merge
[-1, 1, AConv, [180]],
[[-1, 13], 1, Concat, [1]], # cat head P4
# elan-2 block
[-1, 1, RepNCSPELAN4, [360, 360, 180, 1]], # 19 (P4/16-medium)
# avg-conv-down merge
[-1, 1, AConv, [240]],
[[-1, 10], 1, Concat, [1]], # cat head P5
# elan-2 block
[-1, 1, RepNCSPELAN4, [480, 480, 240, 1]], # 22 (P5/32-large)
# routing
[5, 1, CBLinear, [[240]]], # 23
[7, 1, CBLinear, [[240, 360]]], # 24
[9, 1, CBLinear, [[240, 360, 480]]], # 25
# conv down
[0, 1, Conv, [32, 3, 2]], # 26-P1/2
# conv down
[-1, 1, Conv, [64, 3, 2]], # 27-P2/4
# elan-1 block
[-1, 1, RepNCSPELAN4, [128, 128, 64, 1]], # 28
# avg-conv down
[-1, 1, AConv, [240]], # 29-P3/8
[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30
# elan-2 block
[-1, 1, RepNCSPELAN4, [240, 240, 120, 1]], # 31
# avg-conv down
[-1, 1, AConv, [360]], # 32-P4/16
[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33
# elan-2 block
[-1, 1, RepNCSPELAN4, [360, 360, 180, 1]], # 34
# avg-conv down
[-1, 1, AConv, [480]], # 35-P5/32
[[25, -1], 1, CBFuse, [[2]]], # 36
# elan-2 block
[-1, 1, RepNCSPELAN4, [480, 480, 240, 1]], # 37
# detect
[[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]], # Detect(P3, P4, P5)
]
实验阶段我们保持了相同的参数设置,等待长时期的训练过程结束之后我们来对以上十二款不同参数量级的模型进行纵向的对比分析,如下:
【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。
【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。
【loss】
在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。
【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。
【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。
【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。
综合六款不同参数量级模型的开发实验对比结果来看:不同量级的模型呈现出来了相对明显的差距,综合对比考量这里我们考虑使用yolov9-m来作为线上推理模型。
接下来看下yolov9-m模型的详细情况。
【离线推理实例】
【热力图实例】
【Batch实例】
【混淆矩阵】
【F1值曲线】
【Precision曲线】
【PR曲线】
【Recall曲线】
【训练可视化】
AI技术在铁轨运维领域的应用,标志着铁路安全管理向智能化、自动化迈出了重要一步。它不仅解决了传统运维模式面临的诸多挑战,更为铁路交通的安全、高效运行提供了有力保障。随着技术的不断进步和应用的深入,智能运维将成为铁路行业转型升级的重要驱动力,引领铁路安全进入新时代。未来,我们有理由相信,AI技术将在更多领域展现其巨大潜力,为人类社会的可持续发展贡献力量。