一、题目
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意:
可以认为区间的终点总是大于它的起点。
区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
示例 1:
输入: [ [1,2], [2,3], [3,4], [1,3] ]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:
输入: [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:
输入: [ [1,2], [2,3] ]
输出: 0
解释: 你不需要移除任何区间,因为它们已经是无重叠的了。
二、题解
这道题涉及一个移除最小区间个数,分析可得,要使得最后保留的区间数更多,只要每个区间结尾的值够小即可。因此,贪心策略为优先保留结尾小且不相交的区间。
- 首先,将每个区间按照区间结尾元素进行排序(升序)
- 然后,比较区间结尾元素值与起始值判断区间是否相交,直到比较到结尾区间
本题区间相交的判定:
从第一个区间结尾开始,与下一区间的开始元素比较,如果下一区间的开始元素小于prev1,那么说明下一区间与其重叠,丢弃。这样依次与下下区间的开始元素进行比较,直到下一区间的开始元素大于prev1,说明无重叠,更新prev2为该区间结尾元素,循环往复。
三、代码
class Solution {
public:
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if(intervals.empty()) return 0;
int n = intervals.size();
sort(intervals.begin(),intervals.end(),[](vector<int>&a,vector<int>&b){
return a[1]<b[1];
});
int total = 0,prev = intervals[0][1];
for(int i = 1;i<n;i++){
if(intervals[i][0]<prev) total++;
else prev = intervals[i][1];
}
return total;
}
};