贪心算法 |【区间问题】435. 无重叠区间

一、题目

给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。

注意:

可以认为区间的终点总是大于它的起点。
区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
示例 1:

输入: [ [1,2], [2,3], [3,4], [1,3] ]

输出: 1

解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:

输入: [ [1,2], [1,2], [1,2] ]

输出: 2

解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:

输入: [ [1,2], [2,3] ]

输出: 0

解释: 你不需要移除任何区间,因为它们已经是无重叠的了。

二、题解

这道题涉及一个移除最小区间个数,分析可得,要使得最后保留的区间数更多,只要每个区间结尾的值够小即可。因此,贪心策略为优先保留结尾小且不相交的区间。

  • 首先,将每个区间按照区间结尾元素进行排序(升序)
  • 然后,比较区间结尾元素值与起始值判断区间是否相交,直到比较到结尾区间

本题区间相交的判定:
从第一个区间结尾开始,与下一区间的开始元素比较,如果下一区间的开始元素小于prev1,那么说明下一区间与其重叠,丢弃。这样依次与下下区间的开始元素进行比较,直到下一区间的开始元素大于prev1,说明无重叠,更新prev2为该区间结尾元素,循环往复。
在这里插入图片描述

三、代码

class Solution {
public:
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
      if(intervals.empty()) return 0;
      int n = intervals.size();
      sort(intervals.begin(),intervals.end(),[](vector<int>&a,vector<int>&b){
         return a[1]<b[1]; 
      });
      int total = 0,prev = intervals[0][1];
      for(int i = 1;i<n;i++){
          if(intervals[i][0]<prev) total++;
          else prev = intervals[i][1];
      }
      return total;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值