DeepSeek本地部署不行?13个官方平替网站!

一个爱代码的设计师在运营,不定时分享干货、学习方法、效率工具和AIGC趋势发展。个人网站:tomda.top

虽然DeepSeek面临的攻击带来的困扰已逐渐缓解,但其曾经的流畅体验已一去不复返。

图片

今天就来推荐一波DeepSeek-R1的13个官方平替。

1、DeepSeek API

DeepSeek API已恢复注册,仅支持+86手机号新用户,注册即送10元/月。因算力紧张,目前暂停充值,已充余额正常使用。

https://platform.deepseek.com/

图片

2、秘塔AI搜索

集成DeepSeek R1满血版,支持联网+长思考模式,中文优化,文献阅读与信息整合的理想选择。

https://metaso.cn/

图片

3、纳米AI搜索(360)

本产品由360集团倾力打造,基于华为昇腾服务器强劲算力,突破性地实现多模态搜索技术,支持文字、语音、拍照等多种交互方式。全面集成DeepSeek全系列模型,为用户带来极致的智能搜索体验。

https://www.n.cn/

图片

4、钉钉AI助理 

阿里系办公平台,集成DeepSeek R1/V3模型,企业级解决方案,支持PC+移动多端协同。

入口:钉钉客户端内直接使用。  

https://page.dingtalk.com/wow/dingtalk/default/dingtalk/AIzhuli

图片

5、硅基流动+Cherry Studio

注册即送14元额度(约2000万Tokens),享受多模型一站式体验!搭配Cherry Studio客户端,轻松保存聊天记录、创建知识库、搭建智能体。

教详情 点击跳转

https://cloud.siliconflow.cn/i/AZywGNhl

图片

6、天工AI

昆仑万维天工AI重磅升级,新增深度思考R1模式。与秘塔、纳米等平台相同,基于DeepSeek-R1底座模型,提供强大的AI搜索能力。

https://www.tiangong.cn/

图片

7、UIED在线免费Ai工具箱

"DeepSeek AI 智能助手,基于 SiliconFlow 平台,支持多模型智能对话,高效赋能您的 AI 应用!

https://uiedtool.com/tools/ai/deepseek-r1

图片

8、华为小艺助手

华为用户专享!升级小艺助手至11.2.10.310版本,打开App,点击「发现」-「智能体」-「DeepSeek-R1」,即可体验端侧AI新能力!基于华为昇腾云,硅基流动与华为云联合支持。

图片

9、国家超算互联网平台

国家超算互联网平台SCNet支持DeepSeek-R1,提供7B和32B小参数蒸馏版本,免费体验。

https://chat.scnet.cn/

图片

10、火山引擎

字节跳动旗下模型聚合平台现已支持DeepSeek-R1,在智能广场-模型广场中即可找到。

https://console.volcengine.com/ark/region:ark+cn-beijing/experience

图片

11、英伟达NIM微服务

英伟达已部署全量参数671B的DeepSeek-R1模型,网页版一键直达,轻松体验!但由于用户激增,部分时段可能出现卡顿。

https://build.nvidia.com/deepseek-ai/deepseek-r1

图片

12、百度千帆

百度模型平台支持DeepSeek-R1免费体验,访问「模型广场 - DeepSeekR1」即可开启。如需更多功能,需开通付费接口,详情请见平台说明。

https://console.bce.baidu.com/qianfan/modelcenter/model/buildIn/list

13、DeepSeek本地部署+Cherry Studio

DeepSeek本地部署 + Cherry Studio  支持本地化部署,数据安全有保障

https://www.uied.cn/84831.html

图片

 

### 使用LM Studio替代DeepSeek进行本地部署 对于希望利用LM Studio来代替DeepSeek实现模型的本地部署,可以遵循一系列特定的操作流程。不同于通过Ollama直接调用如Llama、Mistral等模型的方式[^1],采用兼容OpenAI API端点的服务(例如LM Studio),能够提供一种不同的途径来进行模型服务化。 #### 安装与配置环境 为了启动并运行LM Studio,首先需要准备合适的开发环境。这通常涉及到安装Docker以及克隆对应的GitHub项目仓库[^2]。确保计算机上已经正确设置了这些前提条件之后,便可以根据官方文档进一步操作。 #### 配置API接口 由于LM Studio旨在模仿OpenAI API的行为模式,因此其对外暴露的一系列RESTful风格的HTTP请求路径设计得尽可能贴近原版。这意味着当切换到LM Studio作为后端支持时,前端应用几乎不需要做任何改动即可无缝对接新平台上的相同功能集。 #### 启动容器实例 一旦完成了必要的前期准备工作,就可以借助于预先构建好的镜像文件快速创建一个新的容器实例。此过程一般会涉及编写简单的`docker-compose.yml`配置脚本以定义所需资源和服务依赖关系: ```yaml version: '3' services: lmstudio: image: lmsudio/your-image-name ports: - "8000:80" environment: - MODEL_NAME=YourModelNameHere ``` 上述YAML片段展示了如何指定映射主机端口至容器内部监听地址,并传递环境变量给目标程序使用。 #### 测试连接稳定性 最后,在一切就绪之后应当立即验证整个系统的连通性和响应速度。可以通过发送测试性质的数据包或者尝试执行一些基本命令来确认预期行为是否正常发生。如果遇到问题,则需仔细排查日志记录中的错误提示信息以便及时调整参数设定直至达到理想效果为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值