告别DeepSeek崩溃!这7款Deep Seek平替AI工具又快又稳,免费还能联网!【2025年2月更新】

本文介绍了如何快速稳定的使用满血版的DeepSeek R1,,实现DeepSeek平替自由

DeepSeek 是什么?

DeepSeek 是由深度求索(DeepSeek)自主研发的高性能大语言模型,以其开源、轻量化和强大的多场景能力受到广泛关注。

为用户提供智能对话、逻辑推理、AI搜索、文件处理、翻译、解题、创意、写作、编程等等多种服务。

最新发布的 DeepSeek R1 满血版不仅在性能上媲美了 OpenAI 的 o1、o3,且以对手 3% 的超低成本实现了这一突破。

DeepSeek 官网

已接入 DeepSeek R1(官方平替)

DeepSeek 入门指南

  • 🔥清华大学 《DeepSeek 从入门到精通》:PDF
  • DeepSeek 提示库:访问

DeepSeek 模型介绍:

  • DeepSeek LLM:基础大型语言模型系列,包含7B和67B规格。其中,DeepSeek LLM 7B Chat 为7B规格的聊天交互模型,DeepSeek LLM 67B Chat 为67B规格的聊天交互模型,并推出了性能超过其他开源模型的16B参数版本混合专家模型。
  • DeepSeek-Coder:专为代码生成打造的模型,专注于代码生成、补全、修复及数学推理任务。升级版本DeepSeek-Coder V2在代码智能领域取得显著突破。
  • DeepSeek-Coder V2:在 DeepSeek-V2 中间检查点基础上,额外预训练了 6 万亿 tokens 的代码和自然语言数据,显著增强了编码与数学推理能力,同时保持通用语言任务的优异表现。支持的编程语言从 86 种扩展至 338 种,覆盖主流及小众语言,适应多样化开发需求。凭借MoE架构、大规模预训练和多语言支持,DeepSeek-Coder V2 成为代码智能领域的标杆开源模型,其在编码、数学推理和通用任务中的表现挑战了闭源模型的垄断地位。
  • DeepSeek-V2:发布于2024年上半年,DeepSeekMoE的改进版,采用更多数据,提升数据质量并优化了训练流程,专注于文本生成、代码生成和低成本训练。
  • DeepSeek-V2.5:是 V2 系列的升级版本,发布于2024年9月,介于 V2 和 V3 之间。
  • DeepSeek-V3:发布于2024年12月,第三代模型,性能强劲。通过FP8混合精度训练、无辅助损失负载均衡等技术创新,V3实现了高效训练与推理,并支持128K长上下文处理。生成速度从V2的20 TPS提升至60 TPS,速度提升3倍。V3在知识问答、长文本处理、代码生成等领域表现超越其他开源模型,并在数学竞赛中超越闭源模型如GPT-4。该模型推出后,成为开放源代码模型中的领跑者。
  • DeepSeek-R1:专注于推理能力的模型,通过强化学习与多阶段训练流程深度优化。包括DeepSeek-R1-Zero,完全基于强化学习训练的早期版本;DeepSeek-R1-32B,有320亿参数,可在24GB显存显卡上流畅运行;DeepSeek-R1-8B,有80亿参数,适用于8GB显存显卡。
  • DeepSeek-VL:视觉语言模型,能够处理图像与文本信息融合。DeepSeek-VL2是其升级版,多模态理解能力更强。
  • DeepSeekMath:专注于数学推理的模型。
  • DeepSeek-Prover:用于定理证明的模型,通过大规模合成数据进行训练,DeepSeek-Prover V1.5结合强化学习与蒙特卡洛树搜索技术进行了优化。
  • Janus-Pro-7B:基于视觉的模型,于2025年1月27日推出。

DeepSeek 主要功能:

  • 智能对话:能够与用户进行高智商、顺畅的对话,像朋友一样交流,为用户答疑解惑。
  • AI搜索:可全网搜索,让用户实时掌握信息,无论是知识查询还是热点追踪,都能快速搞定。
  • 文件上传:支持上传文献书籍、资料报告等各类文件,帮助用户梳理重点,快速提取关键信息。
  • 准确翻译:提供准确流畅的翻译服务,帮助用户跨越语言障碍,轻松融入多语言环境。
  • 智能解题:能够解决理科难题,提供详细的解题思路和步骤,是学习的好帮手。
  • 创意写作:能根据指令自动生成创意文案,撰写各类文章和报告,快速构建内容框架,提升写作效率。
  • 高效编程:支持多种编程语言,可快速定位问题并生成代码,提高编程速度和质量。

DeepSeek 本地部署攻略:

推荐使用 Ollama 工具进行本地部署。Ollama不仅支持 DeepSeek,还可以运行其他多种AI模型~

1. 下载 Ollama

首先访问Ollama官方网站,根据你电脑的系统,下载对应版本的 Ollama,然后安装即可。

Ollama是一个用于本地运行和管理 AI 模型的工具,用于与各种模型进行交互。

1

你也可以在电脑上看到 Ollama 的图标,双击打开即可。

2

2. 下载 DeepSeek R1 模型

接下来需要打开电脑的终端命令行工具,输入命令 ollama run deepseek-r1:32b,后面的是模型尺寸

3

接着就可以正常下载 DeepSeek R1模型了

4

3. 测试 DeepSeek

下载完成后,直接在终端与 DeepSeek 对话,例如输入:“介绍一下你自己”。然后等待 DeepSeek 思考并回复即可。

5

4. 常用命令

整理一些常用 Ollama 命令,使用时将 {model_name} 替换成具体模型名称

  • 安装模型:ollama pull {model_name}
  • 运行模型:ollama run {model_name}
  • 删除模型:ollama rm {model_name}
  • 列出已安装模型:ollama list

DeepSeek 云部署 & API 调用


### Deep Seek AI 编辑器开发环境工具 对于Deep Seek AI编辑器的开发环境,选择合适的工具台至关重要。通常情况下,开发者会选择集成开发环境(IDE)来提高效率并简化工作流程。 #### 1. 集成开发环境 (IDE) Visual Studio Code 是一个广泛使用的 IDE,支持多种编程语言和技术栈。通过安装特定扩展包,可以极大地提升工作效率。例如,Python 扩展提供了智能感知、Linting 和调试功能[^1]: ```python import deepseek as ds def initialize_editor(): config = ds.Config() editor = ds.Editor(config) return editor ``` 此外,JetBrains 的 PyCharm Professional Edition 提供了更强大的内置特性,适合大型项目管理和团队协作。PyCharm 支持插件机制,允许用户自定义界面以适应个人需求或企业标准。 #### 2. 版本控制系统 Git 是最流行的分布式版本控制工具之一,能够有效管理代码库的历史记录和分支操作。GitHub 或 GitLab 台不仅提供托管服务,还集成了CI/CD流水线等功能,有助于自动化测试部署过程。 #### 3. 虚拟化与容器技术 Docker 容器化解决方案使得应用程序可以在任何环境中保持一致的行为表现。这特别适用于微服务架构下的AI应用开发场景,因为每个组件都可以被打包成独立运行的服务单元。 #### 4. 数据处理框架 Apache Spark 是一种快速通用的大规模数据处理引擎,非常适合用于训练大规模机器学习模型的数据预处理阶段。Pandas 库则是在 Python 中进行数据分析的理想选择,具有高效便捷的操作接口。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值