08. 矩阵的四个基本子空间

四个子空间的符号表示

设有矩阵A,设矩阵的秩为r
四个子空间如下

  • 列空间 C(A)
  • 行空间 C(AT)
  • 零空间 N(A)
  • 左零空间 N(AT)

列空间

我们已经很熟悉列空间了
我们可以很容易地找到列空间的一个基
矩阵的所有主列就是一个基向量
所以列空间的基有r个基向量,列空间的维数等于秩r
结论1:列空间维数等于秩

行空间

对于矩阵A,其行最简形式R的前r行就是矩阵的行空间的一个基
所以行空间的维数也为r
结论2:行空间维数等于秩

零空间

零空间的一个基就是 Ax=0 的所有特殊解
而特殊解一共有n-r个,所以零空间的维数等于n-r
结论3:零空间维数等于列数减去秩

左零空间

转置矩阵的秩等于原矩阵的秩

假设 AT 的秩用r’表示
AT 使用结论1 C(AT) 维数为r’
A 使用结论2C(AT)维数为r
得到r = r’
于是得到
结论4:转置矩阵的秩等于原矩阵的秩

左零空间的维数等于m-r

由于A的左零空间等价于 AT 的零空间,而 AT 的零空间的维数等于m-r
得到
结论5:左零空间的维数等于m-r

一个基

对于矩阵A,左零空间的每个向量都是方程 ATy=0 的解
设矩阵A是m行n列,使用 Amn 表示,那么
构造行最简形式的过程这么表示 AmnRmn
构造这样的矩阵 [AmnImm]
将A部分构造成行最简形式的过程
[AmnImm][RmnEmm]
Emm 矩阵记录了化简过程中的所有步骤
因为行变换其实等价于左乘一个矩阵,而这里左乘的矩阵就是 Emm
Emm[AmnImm]=[RmnEmm]
即我们得到 EmmAmn=Rmn
由于A的秩为r,所以R的底部有m-r个零行
而每个零行都是A矩阵的行的线性组合得到,而这m-r个线性组合的参数对应于E的底部m-r个行向量
所以,对于E底部的m-r个行向量,每一个都是 ATy=0 的解
并且由于E是由单位矩阵行变换而来,这m-r个行向量线性无关
于是这m-r个向量便构成了左零空间的一个基

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值