问题描述
S国有N个城市,编号从1到N。城市间用N-1条双向道路连接,满足从一个城市出发可以到达其它所有城市。每个城市信仰不同的宗教,如飞天面条神教、隐形独角兽教、绝地教都是常见的信仰。为了方便,我们用不同的正整数代表各种宗教。
S国的居民常常旅行。旅行时他们总会走最短路,并且为了避免麻烦,只在信仰和他们相同的城市留宿。当然旅程的终点也是信仰与他相同的城市。S国政府为每个城市标定了不同的旅行评级,旅行者们常会记下途中(包括起点和终点)留宿过的城市的评级总和或最大值。
在S国的历史上常会发生以下几种事件:
• "CC x c":城市x的居民全体改信了c教;
• "CW x w":城市x的评级调整为w;
• "QS x y":一位旅行者从城市x出发,到城市y,并记下了途中留宿过的城市的评级总和;
• "QM x y":一位旅行者从城市x出发,到城市y,并记下了途中留宿过的城市的评级最大值。
由于年代久远,旅行者记下的数字已经遗失了,但记录开始之前每座城市的信仰与评级,还有事件记录本身是完好的。请根据这些信息,还原旅行者记下的数字。
为了方便,我们认为事件之间的间隔足够长,以致在任意一次旅行中,所有城市的评级和信仰保持不变。
输入格式
输入的第一行包含整数N,Q,依次表示城市数和事件数。
接下来N行,第i+1行两个整数Wi,Ci依次表示记录开始之前,城市i的评级和信仰。
接下来N-1行每行两个整数x,y表示一条双向道路。
接下来Q行,每行一个操作,格式如上所述。
输出格式
对每个QS和QM事件,输出一行,表示旅行者记下的数字。
样例输入
5 6
3 1
2 3
1 2
3 3
5 1
1 2
1 3
3 4
3 5
QS 1 5
CC 3 1
QS 1 5
CW 3 3
QS 1 5
QM 2 4
样例输出
8
9
11
3
题解
看到求树上路径的各种值,首先想到LCA,然而又有各种各样的操作,因此选择树链剖分来解此题。但这道题又与普通的树链剖分不同,每个城市信不同的宗教(既染有不同的颜色),每次只针对路径上同一颜色进行询问求值。因此树剖时只使用一棵线段树是不够的,我们考虑对每一种颜色都建一棵线段树。但这样肯定会超过空间限制,接着我们发现同一颜色的城市数是有限的,一棵线段树上并不是所有节点都会被用到,因此我们使用动态开点线段树应对颜色的询问及修改操作。PS:多棵线段树进行插入或删除叶子节点的操作 都可考虑使用动态开点。
代码
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=1e5+5;
int a,b,n,q,cnt,tot,poi,c[maxn],w[maxn],rt[maxn],Last[maxn];
int id[maxn],fa[maxn],dep[maxn],son[maxn],siz[maxn],top[maxn],maxx[maxn];
string op;
struct node_
{
int Next,End;
} edge[2*maxn];
struct node
{
int ls,rs,sum,MAX;
} tree[2000000];
inline int input()
{
char t=getchar();
int x=0,flag=0;
while(t<48||t>57)
{
if(t=='-') flag=1;
t=getchar();
}
for(; t>=48&&t<=57; t=getchar()) x=x*10+t-48;
return flag?-x:x;
}
inline void output(int x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) output(x/10);
putchar(x%10+48);
}
void save(int x,int y)
{
edge[++cnt].End=y;
edge[cnt].Next=Last[x],Last[x]=cnt;
}
void getsiz(int x,int f)
{
siz[x]=1,fa[x]=f,dep[x]=dep[fa[x]]+1;
int temp=Last[x];
while(temp)
{
int y=edge[temp].End;
if(y!=f)
{
getsiz(y,x),siz[x]+=siz[y];
if(siz[y]>maxx[x]) maxx[x]=siz[y],son[x]=y;
}
temp=edge[temp].Next;
}
}
void getway(int x,int anc)
{
if(!x) return;
id[x]=++tot,top[x]=anc,getway(son[x],anc);
int temp=Last[x];
while(temp)
{
int y=edge[temp].End;
if(y!=fa[x]&&y!=son[x]) getway(y,y);
temp=edge[temp].Next;
}
}
void modify(int &p,int l,int r,int x,int k)
{
if(!p) p=++poi;
if(l==r)
{
tree[p].MAX=tree[p].sum=k;
return;
}
int mid=(l+r)>>1;
if(x<=mid&&x>=l) modify(tree[p].ls,l,mid,x,k);
if(x>mid&&x<=r) modify(tree[p].rs,mid+1,r,x,k);
tree[p].MAX=max(tree[tree[p].ls].MAX,tree[tree[p].rs].MAX);
tree[p].sum=tree[tree[p].ls].sum+tree[tree[p].rs].sum;
}
int getsum(int p,int l,int r,int x,int y)
{
if(l>=x&&r<=y) return tree[p].sum;
int mid=(l+r)>>1,lsum=0,rsum=0;
if(tree[p].ls&&x<=mid&&y>=l) lsum+=getsum(tree[p].ls,l,mid,x,y);
if(tree[p].rs&&y>mid&&x<=r) rsum+=getsum(tree[p].rs,mid+1,r,x,y);
return lsum+rsum;
}
int querysum(int x,int y)
{
int ans=0;
while(top[x]!=top[y])
{
if(dep[top[x]]>dep[top[y]]) swap(x,y);
ans+=getsum(rt[c[a]],1,tot,id[top[y]],id[y]);
y=fa[top[y]];
}
if(dep[x]>dep[y]) swap(x,y);
ans+=getsum(rt[c[a]],1,tot,id[x],id[y]);
return ans;
}
int getmax(int p,int l,int r,int x,int y)
{
if(l>=x&&r<=y) return tree[p].MAX;
int mid=(l+r)>>1,lmax=-1e9,rmax=-1e9;
if(tree[p].ls&&x<=mid&&y>=l) lmax=getmax(tree[p].ls,l,mid,x,y);
if(tree[p].rs&&y>mid&&x<=r) rmax=getmax(tree[p].rs,mid+1,r,x,y);
return max(lmax,rmax);
}
int querymax(int x,int y)
{
int ans=-1e9;
while(top[x]!=top[y])
{
if(dep[top[x]]>dep[top[y]]) swap(x,y);
ans=max(ans,getmax(rt[c[a]],1,tot,id[top[y]],id[y]));
y=fa[top[y]];
}
if(dep[x]>dep[y]) swap(x,y);
ans=max(ans,getmax(rt[c[a]],1,tot,id[x],id[y]));
return ans;
}
int main()
{
n=input(),q=input(),memset(tree,0,sizeof(tree));
for(int i=1; i<=n; i++) w[i]=input(),c[i]=input();
for(int i=1; i<n; i++) a=input(),b=input(),save(a,b),save(b,a);
getsiz(1,0),getway(1,1);
for(int i=1; i<=n; i++) modify(rt[c[i]],1,tot,id[i],w[i]);
while(q--)
{
cin>>op,a=input(),b=input();
if(op=="CC") modify(rt[c[a]],1,tot,id[a],0),modify(rt[b],1,tot,id[a],w[a]),c[a]=b;
else if(op=="CW") modify(rt[c[a]],1,tot,id[a],b),w[a]=b;
else if(op=="QS") output(querysum(a,b)),putchar('\n');
else output(querymax(a,b)),putchar('\n');
}
return 0;
}