随着农业自动化的快速发展,计算机视觉技术在智慧农业中的应用越来越广泛,特别是在果实成熟度的自动化检测方面。草莓作为一种重要的经济作物,其成熟度的检测对于提高采摘效率和保证果品质量至关重要。本文提出了一种基于YOLOv8深度学习模型的草莓成熟度目标检测系统,旨在实现草莓成熟与未成熟状态的准确分类和定位。
收集并构建了一个包含草莓成熟与未成熟图像的数据集,图像数据通过手工标注进行分类与定位。为了提高模型在不同光照和环境条件下的鲁棒性,本文对数据集进行了增强处理。接着,基于YOLOv8架构,设计并训练了一个高效的目标检测模型,能够准确检测草莓在图像中的位置及其成熟度状态。YOLOv8模型结合了更为高效的特征提取与目标检测机制,相较于传统的YOLO版本在速度和精度上有显著提升。
为了实现系统的实际应用,本文进一步开发了一个基于PyQt5的图形用户界面(GUI),用户可以通过简单的操作上传草莓图像,系统自动识别草莓的成熟度,并显示检测结果。此外,系统还提供了模型训练与评估的功能,支持用户根据不同需求进行模型的优化与调试。
实验结果表明,所提出的草莓成熟度检测系统在精度和实时性方面表现良好,能够有效辅助农户进行草莓的成熟度检测,从而提高采摘效率和减少人工成本,具有较高的实际应用价值。
算法流程
Tipps:深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。
项目数据
Tipps:通过搜集关于数据集为各种各样的皮肤病理相关图像,并使用Labelimg标注工具对每张图片进行标注,分2检测类别,是’草莓成熟’, ‘草莓未成熟’。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。
(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。
注意:这里的中心点坐标、宽和高都是相对数据!!!