行列式的计算
二阶行列式
主对角线相乘减去副对角线相乘
多阶行列式
-
采用的方法是化为上三角形的形式
-
利用的原理性质是某行加减林另外一行的几倍行列式不变
-
首先利用第一行消去第一列的元素
再利用第二行消去第二列的其他元素
再利用第三行消去第三列的其他元素
直到求出行列式的值
其他的两个性质
- 行列式两行互换值乘-1
- 行列式一行或一列乘k倍其总体就得乘k倍
有0先变换
无0化加减
公式一
对角线的数字和其他数字不一样
公式二
每一列都是上一列的次方数加一
行列式的性质
- 行列式的一行等于零一行的倍数时候行列式为0
- 行列式的两个数相加可以拆开变成两个行列式
求余子式,代数余子式
- 去掉行 去掉列 求剩下部分的行列式的值
- 去掉行 去掉列 剩下行列式的值乘以-1的多少次方 多少是此时的行数加列数
求行列式的值
行列式按行按列的展开
如果某一行或一列除了一个数之后全是0
注意:
- 行列式乘的是其对应的代数余子式
多个A和M相加减
将A和M换为的展开式改变行列式即可
给一个方程组判断其解的情况(通过行列式的值判断)
- 齐次:方程右边为0 非齐次:方程右边不为0
- 对于非齐次的方程组来说如果D=0 无解或多个解
- 对于非齐次的方程组来说 如果D不等于0 只有一个非零解
- 对于齐次的方程组来说 如果D等于0 有0解和非零解 如果D不为0 只有零解
矩阵加减
- 一一对应的进行加减就可以
矩阵相乘
- 前列等于后行
- 前行乘后列
矩阵相乘的六种特殊情况
- 0矩阵即是全部都是0
- E矩阵与任何矩阵相乘都为E E矩阵可以自适应几行几列
- AB和BA不相等
- AX=AY不能推出X等于Y
- (AB)^k 不等于A^k B^k
- 完全平方公式不可以被合并 有E矩阵存在时才可以合并
涉及转置的题目
证明矩阵可逆
- 方法1:判断行列式不为0就可逆
- 方法2 :让一个矩阵乘他或他乘一个矩阵等于E
求逆矩阵
求一个矩阵的逆矩阵采用初等行变换的方法求
利用A逆乘A等于E
利用A星号乘A等于A绝对值E
同上消去A星
求矩阵的R
让下行的0永远比上行多
已知矩阵的R求其他的的未知数
将矩阵尽量化为从下到上0变少的形式
判断某向量可否由某向量组线性表示
将新的向量与原向量组成新的向量方程组
判断某个向量组是否线性相关
R个数如果小于向量个数就线性相关 否则就线性无关
已知一组基底 求一向量在此基底下的坐标
设k1 k2 k3 在新的基底下实现
求几个行向量的极大无关组
就是把他化为R的形式看他对哪一行进行了变换
判断方程组解的个数(Rank)
解方程组
- 求RA增广矩阵
- 将其中第R行R列化成E
- 设未知数个数减去RA的k依次代替后几个未知数
- 再将改变后的矩阵回复为方程组
- 用代替后的k来表示出每个x的值
求通解 特解 基础解系
通解就是带k的值
特解就是把k赋值成一个
基础解系就是只取其中k几列的值
通过特解求通解
求其次的通解
把非齐次的对其右侧为0
再通过加一个常数构造成求非齐次的通解
判断解集合空间中线性无关的解向量个数
规范正交化
-
中括号指的是点积
-
双竖线代表平方和再取根号
-
规范正交化的方法!#
求矩阵的特征值
求矩阵的特征值A-λE的行列式
求解出λ
λ123从次方数小到大排序
求矩阵的特征向量
求(A-λE)x=0的通解就是特征向量
求通解注意分类讨论λ的值
判断方阵是否与对角线相似/是否满足p-1AP=尖
特征向量等于则满足 不等于则不满足
求方阵的对角阵以及可逆变换矩阵P
再将矩阵从左到右依次排列得到可你变换矩阵
已知关于对角阵相似 求关于A的复杂式子
求二次型对应的系数矩阵
- 找出二次型式子所含的最大的n
- 将其化为特定的形式
- 找出相应的a最后化为矩阵形式
- 将上半部分对称的填到矩阵当中