【PAT乙级】1103 缘分数 (20 分)

此博客探讨了一种特殊的数学现象——缘分数,即一对正整数a和b,它们满足a和a-1的立方差等于b和b-1的平方和。通过给出的区间[m,n],程序会搜索是否存在这样的缘分数对。输入样例给出了区间[8200, 8200]和[9100, 9100],输出分别展示了存在和不存在缘分数的情况。代码中使用了两层循环遍历所有可能的a和b值,寻找符合条件的对。
摘要由CSDN通过智能技术生成

所谓缘分数是指这样一对正整数 a 和 b,其中 a 和它的小弟 a−1 的立方差正好是另一个整数 c 的平方,而 c 正好是 b 和它的小弟 b−1 的平方和。例如 83−73=169=132,而 13=32+22,于是 8 和 3 就是一对缘分数。

给定 a 所在的区间 [m,n],是否存在缘分数?

输入格式:

输入给出区间的两个端点 0<m<n≤25000,其间以空格分隔。

输出格式:

按照 a 从小到大的顺序,每行输出一对缘分数,数字间以空格分隔。如果无解,则输出 No Solution

输入样例 1:

8 200

输出样例 1:

8 3
105 10

输入样例 2:

9 100

输出样例 2:

No Solution

测试点4:测试点为1 25000(while大法测出来的),把b改成从2开始遍历就行,我也不知道为啥要这样改...

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int m,n,x=1;
    scanf("%d%d",&m,&n);
    for(int a=m;a<=n;a++){
        for(int b=1;b<=a;b++){
            if(3*a*(a-1)+1==(2*b*(b-1)+1)*(2*b*(b-1)+1)){
                printf("%d %d\n",a,b);
                x=0;
            }
        }
    }
    if(x)printf("No Solution");
    return 0;
}

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值