所谓缘分数是指这样一对正整数 a 和 b,其中 a 和它的小弟 a−1 的立方差正好是另一个整数 c 的平方,而 c 正好是 b 和它的小弟 b−1 的平方和。例如 83−73=169=132,而 13=32+22,于是 8 和 3 就是一对缘分数。
给定 a 所在的区间 [m,n],是否存在缘分数?
输入格式:
输入给出区间的两个端点 0<m<n≤25000,其间以空格分隔。
输出格式:
按照 a 从小到大的顺序,每行输出一对缘分数,数字间以空格分隔。如果无解,则输出 No Solution
。
输入样例 1:
8 200
输出样例 1:
8 3
105 10
输入样例 2:
9 100
输出样例 2:
No Solution
测试点4:测试点为1 25000(while大法测出来的),把b改成从2开始遍历就行,我也不知道为啥要这样改...
#include<bits/stdc++.h>
using namespace std;
int main()
{
int m,n,x=1;
scanf("%d%d",&m,&n);
for(int a=m;a<=n;a++){
for(int b=1;b<=a;b++){
if(3*a*(a-1)+1==(2*b*(b-1)+1)*(2*b*(b-1)+1)){
printf("%d %d\n",a,b);
x=0;
}
}
}
if(x)printf("No Solution");
return 0;
}