第二周实践3--体验复杂度(2)汉诺塔

问题及代码:

/*     
      Copyright (c)2015,烟台大学计算机与控制工程学院     
      All rights reserved.     
      文件名称:项目3--体验复杂度(2)汉诺塔.cpp     
      作    者:朱振华     
      完成日期:2015年9月16日     
      版 本 号:v1.0     
   
      问题描述:有一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教  
                的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。  
                不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。  
                僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和  
                众生也都将同归于尽。 可以算法出,当盘子数为n个时,需要移动的次数是f(n)=2^n-1 。n=64时,假如每秒钟移一次,共  
                需要18446744073709551615秒。一个平年365天有31536000秒,闰年366天有31622400秒,平均每年31556952秒,移完这些金  
                片需要5845.54亿年以上,而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年。真的过了5845.54亿年,不  
                说太阳系和银河系,至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭。据此,2^n从数量级上看大得不得了。  
                用递归算法求解汉诺塔问题,其复杂度可以求得为O(2^n),是指数级的算法。请到课程主页下载程序运行一下,  
                体验盘子数discCount为4、8、16、20、24时在时间耗费上的差异,你能忍受多大的discCount。   
      输入描述:需要移动的盘子数。    
      程序输出:盘子的移动次数。  
*/    

 

用递归算法实现的汉诺塔代码:

#include <stdio.h>
#define discCount 4
long move(int, char, char,char);
int main()
{
    long count;
    count=move(discCount,'A','B','C');
    printf("%d个盘子需要移动%ld次\n", discCount, count);
    return 0;
}

long move(int n, char A, char B,char C)
{
    long c1,c2;
    if(n==1)
        return 1;
    else
    {
        c1=move(n-1,A,C,B);
        c2=move(n-1,B,A,C);
        return c1+c2+1;
    }
}


运行结果:

当discCount=4时:



 

当discCount=8时:

 

当discCount=16时:

 

当discCount=20时:

结果总结:

       指数级复杂度的算法随着n的增加增长的幅度极大,在实际编程中应该避免这种算法。

学习心得:

     1.编写程序应该避免指数计算法,这种算法的运行时间非常长。

     2.递归算法对于我们是必需要掌握的方法。

附递归算法的优缺点:

递归好处:代码更简洁清晰。一般来说,一个人可能很容易的写出前中后序的二叉树遍历的递归算法,要写出相应的非递归算法就比较考验水平了,恐怕至少一半的人搞不定。所以说递归代码更简洁明了。

递归坏处:由于递归需要系统堆栈,所以空间消耗要比非递归代码要大很多。而且,如果递归深度太大,可能系统撑不住。

以上递归算法优缺点节选自 chieryuhuan的新浪博客。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值