clear all;
close all;
clc;
r=127;
x=-r:r+1;
sigma=20;
y1=exp(-((x-80).^2)/(2*sigma^2));
y2=exp(-((x+80).^2)/(2*sigma^2));
y=y1+y2; %双峰高斯函数,任意函数都可以
y=y/sum(y); %归一化,使函数符合概率分布的sum(y)==1这样一个规律
x=x+r;
figure;
bar(x,y,0.000000000000000000000000000000000000000001)
xlim([0 255])
% plot(y); %待匹配的直方图
% imhist(y)
G=[]; %函数的累积直方图
for i=1:256
G=[G sum(y(1:i))];
end
img=imread('1.jpg');
img=rgb2gray(img);
[m n]=size(img);
hist=imhist(img); %待处理图像的直方图
figure;
imhist(img);
p=hist/(m*n);
figure;bar(p,0.0000000000000000000001)
xlim([0 255])
%原图直方图
s=[]; %待处理图像的累积直方图
for i=1:256
s=[s sum(p(1:i))];
end
for i=1:256
tmp{i}=G-s(i);
tmp{i}=abs(tmp{i}); %因为要找距离最近的点,所以取绝对值
[a index(i)]=min(tmp{i}); %找到两个累积直方图距离最近的点
end
imgn=zeros(m,n);
for i=1:m
for j=1:n
imgn(i,j)=index(img(i,j)+1)-1; %由原图的灰度通过索引映射到新的灰度
end
end
imgn=uint8(imgn);
figure;imshow(imgn)
imwrite(imgn,'1.jpg');
% figure;plot(imhist(imgn)) %新图的直方图
hist=imhist(imgn)
p=hist/(m*n);
figure;bar(p,0.0000000000000000000001)
xlim([0 255])
mtalab图像灰度变换
最新推荐文章于 2022-09-20 08:46:01 发布
该博客介绍了如何使用MATLAB进行图像的灰度变换,通过双峰高斯函数生成模拟直方图,并对实际图像的灰度直方图进行匹配。通过计算两个累积直方图之间的最小距离,将原始图像的灰度映射到新的灰度值,从而实现图像的灰度变换。最后展示并保存了变换后的图像直方图。
摘要由CSDN通过智能技术生成