对EfficientDet中加权融合方法的代码解读

本文主要解析了谷歌大脑EfficientDet中BiFPN的加权融合部分的代码,介绍了tensorflow的相关函数,如Variable、tf.cast()、tf.concat()、乘法运算以及reduce_sum()。代码实现了三种融合方法:attn(使用softmax),fastattn和sum(直接求和)。
摘要由CSDN通过智能技术生成

谷歌大脑的《EfficientDet: Scalable and Efficient Object Detection》代码目前已经公布,代码链接:https://github.com/google/automl/tree/master/efficientdet
接下来将对BiFPN中加权融合部分进行解析。

对应代码入下:

 # Combine all nodes.
      dtype = nodes[0].dtype
      if config.weight_method == 'attn':
        edge_weights = [tf.cast(tf.Variable(1.0, name='WSM'), dtype=dtype)
                        for _ in range(len(fnode['inputs_offsets']))]
        normalized_weights = tf.nn.softmax(tf.stack(edge_weights))
        nodes = tf.stack(nodes, axis=-1)
        new_node = tf.reduce_sum(tf.multiply(nodes, normalized_w
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值