自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(40)
  • 资源 (8)
  • 收藏
  • 关注

原创 第J2周:ResNet50V2算法实战与解析

🧲 改进点:(a)original 表示原始的 ResNet 的残差结构,(b)proposed 表示新的 ResNet 的残差结构。从图中结果我们可以看出,(b)proposed 的测试集错误率明显更低一些,达到了 4.92%的错误率,(a)original 的测试集错误率是 7.61%。作者用不同 shortcut 结构的 ResNet-110 在 CIFAR-10 数据集上做测试,发现最原始的(a)original 结构是最好的,也就是 identity mapping 恒等映射是最好的。

2023-07-28 12:55:16 103

原创 第J1周:ResNet-50算法实战与解析

图2左边的单元为 ResNet 两层的残差单元,两层的残差单元包含两个相同输出的通道数的 3x3 卷积,只是用于较浅的 ResNet 网络,对较深的网络主要使用三层的残差单元。证明过程也很简单:假设在一种网络A的后面添加几层形成新的网络B,如果增加的层级只是对A的输出做了个恒等映射(identity mapping),即A的输出经过新增的层级变成B的输出后没有发生变化,这样网络A和网络B的错误率就是相等的,也就证明了加深后的网络不会比加深前的网络效果差。这个卷积块可以用于深度残差网络的构建。

2023-07-21 22:17:22 71

原创 OpenCV中的图像处理3.11(10) OpenCV中的图像变换

翻译及二次校对:cvtutorials.com编辑者:廿瓶鲸(和鲸社区Siby团队成员)

2023-06-09 10:45:23 839

原创 PyTorch实战7:咖啡豆识别--手动搭建VGG16

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。📌如果将优化器换成 SGD 会发生什么呢?请自行探索接下来发生的诡异事件的原因。如果设备上支持GPU就使用GPU,否则使用CPU。训练营往期文章中有详细的介绍。

2023-06-08 20:45:57 483

原创 PyTorch实战6:好莱坞明星识别--VGG16

这个调度器的作用是根据指定的学习率变化规律,动态地调整优化器中的学习率。首先,定义了一个名为lambda1的匿名函数,其输入为epoch,表示当前训练的轮数(epoch),返回值为0.92的epoch//4次方。这个函数的作用是计算每一轮训练的学习率,采用指数衰减的方式,即每经过4个epoch,学习率就会降低为原来的0.92倍。在模型训练过程中,如果当前测试准确率(epoch_test_acc)比之前的最好准确率(best_acc)更高,就保存当前的模型(使用深拷贝方法),并更新最好准确率。

2023-05-25 20:37:14 779

原创 OpenCV中的图像处理3.10(九)二维直方图与反投影

我们创建一个包含我们感兴趣的对象(在我们的例子中,地面、离开的球员和其他东西)的图像的直方图。它的一个参数是直方图,这是对象的直方图,我们必须找到它。简单地说,它创建了一个与我们的输入图像相同大小(但为单通道)的图像,其中每个像素对应于该像素属于我们的对象的概率。它对应的是宫殿的黄色。1.首先,我们需要计算我们需要寻找的对象(让它成为 “M”)和我们要搜索的图像(让它成为 “I”)的颜色直方图。你可以在直方图中清楚地看到哪些颜色是存在的,蓝色是存在的,黄色是存在的,还有一些由于棋盘造成的白色是存在的。

2023-05-24 23:26:02 325 1

原创 OpenCV中的图像处理3.10(八)直方图-寻找、绘制、分析(掩膜)与均衡化

翻译及二次校对:cvtutorials.com编辑者:廿瓶鲸(和鲸社区Siby团队成员)

2023-05-19 15:01:03 618

原创 OpenCV中的图像处理3.9(七)轮廓线及其层次结构

通常我们使用cv.findContours()函数来检测图像中的物体,有时物体在不同的位置。但在某些情况下,有些形状是在其他形状里面的。就像嵌套的图形。在这种情况下,我们称外部的为父,内部的为子。这样一来,图像中的轮廓就有了一些相互之间的关系。我们可以指定一个轮廓是如何相互连接的,比如,它是另一个轮廓的孩子,或者它是一个父母等等。这种关系的表现形式被称为层次结构(Hierarchy)。请看下面的一个例子:在这张图片中,有几个形状,我把它们编号为0-5。2和2a表示最外层盒子的外部和内部轮廓线。

2023-05-15 17:04:07 592

原创 OpenCV中的图像处理3.9(六)轮廓线特征与属性

轮廓线可以简单地解释为连接所有连续点(沿边界)的曲线,具有相同的颜色或灰度。轮廓线是形状分析和物体检测与识别的一个有用工具。为了获得更好的准确性,使用二进制图像。因此,在寻找轮廓线之前,应用阈值或Canny边缘检测。从OpenCV 3.2开始,findContours()不再修改源图像了。在OpenCV中,寻找轮廓线就像从黑色背景中寻找白色物体。所以请记住,要找到的物体应该是白色的,背景应该是黑色的。让我们来看看如何找到二进制图像的轮廓线。

2023-05-15 16:59:08 1618 2

原创 PyTorch实战5:运动鞋识别之动态学习率

● milestones(list):是一个关于epoch数值的list,表示在达到哪个epoch范围内开始变化,必须是升序排列。● step_size(int):是学习率衰减的周期,每经过每个epoch,做一次学习率decay。● optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名。● optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名。● optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名。

2023-05-12 21:18:03 1152 2

原创 OpenCV中的图像处理3.7-3.8(五)边缘检测、图像金字塔

翻译及二次校对:cvtutorials.com编辑者:廿瓶鲸(和鲸社区Siby团队成员)

2023-05-09 15:34:36 1474

原创 OpenCV中的图像处理3.4-3.6(四)平滑化、形态学、图像梯度

翻译及二次校对:cvtutorials.com编辑者:廿瓶鲸(和鲸社区Siby团队成员)

2023-05-06 01:37:28 527

原创 PyTorch实战4:猴痘病识别

使用更深的网络结构:可以尝试使用更深的网络结构,如ResNet、DenseNet等,这些网络结构能够更好地解决梯度消失问题,从而使得模型训练更加稳定。增加卷积层的数量和大小:增加卷积层的数量和大小可以提高网络的感受野,从而更好地捕捉图像的特征。使用预训练的模型进行微调:可以使用在大规模数据集上预训练的模型,在本任务上进行微调,能够更好地利用已有数据集的信息,提高模型的精度。增加数据集:可以尝试增加训练数据的数量,或者通过数据增强技术来生成更多的数据样本,以便网络可以更好地学习数据特征。

2023-05-05 21:42:44 1211 1

原创 PyTorch实战3:天气识别

本次学习主要涉及了PyTorch中CNN网络的搭建、数据处理和模型预测。在准备阶段,通过导入数据、使用transforms.Compose进行数据增强、加载数据集以及划分数据集等操作为构建CNN网络做好准备。在构建CNN网络的过程中,介绍了torch.nn.Flatten()和x.view()两个函数,并讲解了它们之间的区别。最后,还学习了如何使用指定的图片进行预测,包括torch.squeeze()和torch.unsqueeze()的详解和某张图片的预测方法。

2023-04-26 18:03:27 770

原创 OpenCV中的图像处理3.1-3.3(三)色彩空间、几何变换、阈值处理

最好的插值方法是用于缩小的cv.INTER_AREA和用于缩放的cv.INTER_CUBIC(慢速)和cv.INTER_LINEAR。因此,我们对同一图像的不同区域得到不同的阈值,这对具有不同光照度的图像有更好的效果。一旦你学会了轮廓线的功能,你就可以做很多事情,比如找到物体的中心点,用它来追踪物体,只需在相机前移动手就可以画图,以及其他有趣的事情。在我们的应用中,我们将尝试提取一个蓝色的物体。警告:cv.warpAffine()函数的第三个参数是输出图像的大小,它应该是(宽度,高度)的形式。

2023-04-26 11:48:46 1705 1

原创 OpenCV核心运算(二)—图像基本与算术操作

所以,如果OpenCV启用了优化代码,它就会运行优化的代码,否则就会运行未优化的代码。我们将看到一些重要的功能,更多的细节,请查看附加资源部分的链接。然而,它们总是返回一个标量,所以如果你想访问所有的B、G、R值,你将需要为每个值分别调用array.item()。但我希望它是不透明的。它们在提取图像的任何部分(正如我们将在接下来的章节中看到的那样)、定义和处理非矩形的ROI等方面将非常有用。在图像处理中,由于你要每秒处理大量操作,你的代码不仅要提供正确的解决方案,而且要以最快的方式提供,这是必须的。

2023-04-20 13:39:07 578

原创 PyTorch实战2:彩色图片识别(CIFAR10)

本文实战并没有使用深度学习训练营中的网络结构进行模型训练,而是自己设计了一个较为简单的、易于理解的网络结构,发现亲手设计从0到1的网络会遇到一些问题,比如每个层的参数该如何设置,卷积层、池化层如何计算,使用多少个卷积层、池化层、全连接层,尝试不用正规卷积而改用稀疏卷积如何去实现等等。本次实战运用自己设计的网络结构开始训练模型,最终结果证明效果一般般,毕竟这是第一次且刚入门的小案例,后续熟练了再试着去调参优化,将模型的精度提高至80,甚至90。

2023-04-20 13:14:52 735

原创 OpenCV介绍与GUI特征(一)

翻译及二次校对:cvtutorials.com编辑者:廿瓶鲸(和鲸社区Siby团队成员)

2023-04-15 12:46:13 490

原创 PyTorch实战1:实现mnist手写数字识别

介绍如何构建一个简单的卷积神经网络(CNN),用于图像分类任务。具体来说,该网络由特征提取网络和分类网络两部分组成。特征提取网络主要包括卷积层、池化层和激活函数,用于提取图像的特征;而分类网络则包括一个或多个全连接层,用于根据提取到的特征对图像进行分类。nn.Conv2d表示卷积层,其输入参数包括输入通道数、输出通道数和池化核大小;nn.MaxPool2d表示池化层,用于下采样并提高抽象程度;nn.ReLU为激活函数,使得模型可以拟合非线性数据;

2023-04-14 11:20:11 372

原创 《统计学习方法》——第五章、决策树的构造及其算法(下)

作者简介:整个建筑最重要的是地基,地基不稳,地动山摇。而学技术更要扎稳基础,关注我,带你稳扎每一板块邻域的基础。博客主页:啊四战斗霸的博客收录专栏:《统计学习方法》第二版——个人笔记南来的北往的,走过路过千万别错过,错过本篇,“精彩”可能与您失之交臂 laTriple attack(三连击):Comment,Like and Collect—>Attention文章目录特征选择特征选择问题信息增益信息增益比决策树的生成ID3算法C4.5的生成算法决策树的剪枝CART算法CART生成CAR.

2022-05-28 10:07:46 214 6

原创 《统计学习方法》——第五章、决策树模型与学习(上)

作者简介:整个建筑最重要的是地基,地基不稳,地动山摇。而学技术更要扎稳基础,关注我,带你稳扎每一板块邻域的基础。博客主页:啊四战斗霸的博客收录专栏:《统计学习方法》第二版——个人笔记南来的北往的,走过路过千万别错过,错过本篇,“精彩”可能与您失之交臂 laTriple attack(三连击):Comment,Like and Collect—>Attention文章目录决策树:从训练集中学习得出一个树状结构的模型。决策树属于判别模型分类决策树模型是一种描述对实例进行分类的树形结构。.

2022-05-26 09:10:50 259 29

原创 Matplotlib剑客行——布局指南与多图实现(更新)

个性签名:整个建筑最重要的是地基,地基不稳,地动山摇。而学技术更要扎稳基础,关注我,带你稳扎每一板块邻域的基础。博客主页:七归的博客收录专栏:Python三剑客之江湖云南来的北往的,走过路过千万别错过,错过本篇,“精彩”可能与您失之交臂yoTriple attack(三连击):Comment,Like and Collect—>Attention文章目录布局指南简单示例字幕——标题传说——图例填充与间距多图实现多图——plt.subplotssubplots参数两种实现方式OO风格plp.

2022-05-24 11:37:17 371 45

原创 Matplotlib剑客行——容纳百川的艺术家教程

个性签名:整个建筑最重要的是地基,地基不稳,地动山摇。而学技术更要扎稳基础,关注我,带你稳扎每一板块邻域的基础。博客主页:廿三里的博客收录专栏:Python三剑客之江湖云南来的北往的,走过路过千万别错过,错过本篇,“精彩”可能与您失之交臂yoTriple attack(三连击):Comment,Like and Collect—>Attention文章目录...

2022-05-22 20:00:00 1030 75

原创 Matplotlib剑客行——没有工具用代码也能画图的造型师

文章目录造型师——样式参数颜色线性标记标记地块轴标签和文本造型师——样式参数大多数绘图方法都有样式选项,可以访问当前调用绘图方法,或从Artist 上的“setter”调用。 在里面图中,我们手动设置了 颜色 、线宽和线型的plot,我们设置第二行的线型可调用 set_linestyle。import numpy as npimport matplotlib.pyplot as plt# 加载字体plt.rcParams['font.sans-serif'] = ['SimHei'] # 指

2022-05-20 07:30:00 1125 56

原创 机器学习之数据类型案例——基于朴素贝叶斯法,用数据辩男女

作者简介:整个建筑最重要的是地基,地基不稳,地动山摇。而学技术更要扎稳基础,关注我,带你稳扎每一板块邻域的基础。博客主页:啊四战斗霸的博客收录专栏:《统计学习方法》第二版——个人笔记南来的北往的,走过路过千万别错过,错过本篇,“精彩”可能与您失之交臂 laTriple attack(三连击):Comment,Like and Collect—>Attention文章目录...

2022-05-17 14:03:40 872 52

原创 Matplotlib剑客行——初相识Matplotlib

个性签名:整个建筑最重要的是地基,地基不稳,地动山摇。而学技术更要扎稳基础,关注我,带你稳扎每一板块邻域的基础。博客主页:啊四战斗霸的博客南来的北往的,走过路过千万别错过,错过本篇,“精彩”可能与您失之交臂yo有代码,就有注释!!!Triple attack(三连击):Comment,Like and Collect—>Attention文章目录Matplotlib简介认识Matlpotlib安装Matplotlib库举个简单的栗子Matplotlib图表窗口图的部分FigureAxes.

2022-05-17 08:00:00 489 47

原创 盘点典型错误之TypeError: X() got multiple values for argument ‘Y‘

今天来给大家分享一个常见的报错:- 报错点 - wedgeprops={'width': 0.5, 'edgecolor': 'w'}) # 绘制图像- 报错原因 - TypeError: pie() got multiple values for argument 'explode'标题中使用‘X’,‘Y’分别替代了‘pie’函数与‘explode’参数。因为笔者觉得这种报错情况很是典型,只是函数与参数不同,报错的根本原因却是一样的——参数个数不对应。

2022-05-16 11:48:36 9818 8

原创 概率还不会的快看过来《统计学习方法》——第四章、朴素贝叶斯法

作者简介:整个建筑最重要的是地基,地基不稳,地动山摇。而学技术更要扎稳基础,关注我,带你稳扎每一板块邻域的基础。博客主页:啊四战斗霸的博客专栏:《统计学习方法》第二版——个人笔记创作不易,走过路过别忘了三连击了哟!!!关注作者,不仅幸运爆棚,未来更可期!!!***有代码,就有注释!!!Triple attack(三连击):Comment,Like and Collect—>Attention朴素贝叶斯法是基于贝叶斯定理和特征条件独立假设的分类方法。对于给定训练数据集,首先基于特征条件.

2022-05-16 07:30:00 1631 74

原创 双非本科生进大厂,而我还在底层默默地爬树(上)

近日,我身边有一个人进字节跳动了。当我知道这消息时,我是羡慕的、也怀有奢望的眺望,更有做白日梦、不切实际的胆大妄想;我能生有此种想法,因为相信总有一天大厂也会有我的一席之地。虽然如今的我仍在爬“树”,我很坚信只要坚持往上爬,也有一份丰硕的果实在等着我,即使远方是我难以靠岸的码头,我也会一直坚持下去。

2022-05-14 07:30:00 600 10

原创 学会这个python库,几个项目就摸清了这个套路

CSDN话题挑战赛第1期活动详情地址:https://marketing.csdn.net/p/bb5081d88a77db8d6ef45bb7b6ef3d7f参赛话题:Python精彩第三方模块推荐话题描述:推荐需求实战中碰到的实用第三方模块,也可推荐有趣的 Python 第三方模块创作模板:文章目录项目/需求实战中碰到的问题第三方模块(模块名)介绍推荐理由(模块名)速度上手实战同类型模块推荐模块 A模块 B总结+思路扩展项目/需求实战中碰到的问题提示:可以在这里编写项目实战中,碰到的问题或

2022-05-12 09:56:20 1193 55

原创 机器学习实战:《美人鱼》属于爱情片还是动作片?KNN揭晓答案

本篇引入《美人鱼》的电影类型判断案例介绍两种KNN模型算法的实现方式,一种是Numpy实现,另一种是Sklearn实现KNN算法。其中两种方式的代码一并注有详细注释,且均带有实现算法的步骤,最后有学习心得分享,与大家一起切磋学习,共同进步!

2022-05-09 06:30:00 1816 59

原创 数构(C语言)——第四章、矩阵的压缩存储(下)

一、矩阵的压缩存储(一)、数组的存储结构1、一维数组定义:ElemType a[MaxSize]; //ElemType型一维数组各数组元素大小相同,且物理上连续存放数组元素a[i]的存放地址=起始地址+i*sizeof(ElemType)2、二维数组定义:ElemType b[M][N]; //M行N列的二维数组存储方式:行优先存储或列优先存储M行N列的二维数组b[M][N]中,若按行优先存储,则b[i][j]的存储地址=起始地址+(i*N+j)sizeof(ElemType)若按

2022-05-06 15:15:51 2404 50

原创 长篇总结(代码有注释)数构(C语言)——第四章、串(上)

本章主要是串的知识点,分为三大部分,第一是串的定义以及串的基本操作;第二则是实现串的基本操作的两种方式分别为顺序存储与链式存储;最后一个部分也是本章比较重点,也是较难的即串的模式匹配。最后祝大家学有所获!——任何伟大的等待,是不会去问值不值得的,不是说有希望我才去等,而是你等了就会有希望。

2022-05-04 23:37:28 1135 74

原创 知识点很细(代码有注释)数构(C语言)——第三章、栈和队列

学完了线性表之后记得回去复习,把基础记牢了再掌握重难点。接着开启第三章栈和队列,篇幅比较长,可以收藏了慢慢看哦!知识点还是很全面,几乎有关本章节的都已收入囊中,好好品尝哦!加油💪💪——世间很多美好的事物,并非是触手可及的,经过了时间的酝酿和打磨,等待的结果,才会显得更加珍贵。

2022-05-03 23:49:57 1197 24

原创 数构(C语言--代码有注释)——第二章、线性表(更新版)

第二章是数据结构的开端,学好了后面的内容才不会很难哦!本章节行数达1000行,字数有20000万以上,是博主精心整理与总结的精文。还请多多指教!从现在就开启我们的数据结构的学习与交流拉,欢迎大家来切磋切磋!若有不足,请评论区告知!你想成为更好的自己 ,不能是一个懵懂迷茫的状态 ,人的一辈子呢 ,是应该不断的往前走的, 而且呢 ,你要明确你去到的地方 ,是更有价值 更有意义的地方......

2022-05-02 18:22:16 1413 42

原创 概念到方法,绝了《统计学习方法》——第三章、k近邻法

乏味的概念处处透露着方法,原理竟有可能就这么简单,一步一步讲解流程,这样还不快点理解透彻KNN算法的原理。——那些在深夜里睡不着的日子,那些面对深渊想要逃跑的瞬间,在日后看来都是非常珍贵的时刻。它让我们更加诚实的面对自己,只有认识它,接受它,我们才可能真正地超越它。

2022-05-01 14:26:36 1368 42

原创 一篇详解带你再次重现《统计学习方法》——第二章、感知机模型

我不怕从头再来,但怕走到半路找不到方向,越走越迷茫,最终迷失了自我,也许一切重新开始并不是最坏的事,毕竟海洋总不会一直风平浪静的

2022-04-28 22:28:21 2680 42

原创 西瓜书--第六章.支持向量机(SVM)

目录目录一、硬间隔与支持向量1、线性可分支持向量机2、函数间隔与几何间隔样本点与超平面是保持着一定函数距离的,通过超平面方程和函数距离,以计算其距离,得到两条边界函数wx+b=1和wx+b=-1进而分类。函数间隔:几何间隔:3、间隔最大化二、对偶问题拉格朗日乘子法:三、核函数1、线性不可分2、核函数四、软间隔与正则化软间隔(含线性支持向量机):五、支持向量回归六、核方法1、核方法2、非线性支持向量机目录支持向量机是一类按

2022-03-30 21:24:43 2282 38

原创 西瓜书--第五章.神经网络

人工神经网络(ANN):模拟人脑神经系统的结构和功能,运用大量简单处理单元经广泛连接而组成的人工网络系统。一、神经元一个神经元通常具有多个树突。主要用来接收传入信息,而轴突只有一条。轴突可以给其他多个神经元传递信息。轴突末梢与树突产生连接,从而传递信号,这个连接则对应着一个权重;权重的值称为权值,这是需要训练得到的。即每个连接线对应一个不同的权重。神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。神经网络..

2022-03-27 15:16:15 2291 52

原创 西瓜书--第三章.线性模型

线性:y = a * x ———>一次方的变化回归:回归到平均值简单线性回归:算法=公式,一元一次方程组一元指的是一个x,影响y的因素,即维度;一次指的是x的变化,没有非线性的变化。线性回归是一种用来 分析一个或多个自变量与一个因变量之间的线性关系的技术,它意味着数据中的点集中在一条直线周围。我们的目标是找到一个最佳拟合线,能够尽可能地模拟数据点地路径。那么,在使用时并不是都会需要线性回归地。当自变量与因变量之间具有线性相关并且预测连续值时,选择线性回归;当自变量与因变量之间是非线.

2022-03-21 17:10:58 747 4

OpenCV人脸识别与目标追踪

OpenCV人脸识别与目标追踪

2023-03-21

requests爬取股票业绩报告

requests爬取股票业绩报告

2023-03-21

CSV与JSON文件转换

CSV与JSON文件转换

2023-03-21

运用tushare爬取五档盘口实时数据

运用tushare爬取五档盘口实时数据

2023-03-21

贝壳找房网站爬取杭州新房数据

贝壳找房网站爬取杭州新房数据

2023-03-21

矩阵微分手册translate.pdf

矩阵微分手册translate.pdf

2022-05-11

数据结构题目C代码.pdf

数据结构题目C代码.pdf

2022-05-10

数据结构完整代码.pdf

数据结构完整代码.pdf

2022-05-06

机器学习常用「线性代数」知识速查手册.pdf

机器学习常用「线性代数」知识速查手册.pdf

2022-05-06

机器学习常用「微积分」知识速查手册.pdf

机器学习常用「微积分」知识速查手册.pdf

2022-05-06

数据结构知识点全面总结—精华版.pdf

数据结构知识点全面总结—精华版.pdf

2022-05-05

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

2022-05-02

数据结构1800试题.pdf(C语言版)

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案。

2022-05-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除