单模板匹配
输入:底图 image(博客首页的图),模板图片 templ 如下:
# _*_coding:utf-8_*_
import cv2 as cv2
# 单个模板匹配
def one_match(image, templ):
img = cv2.imread(image)
template = cv2.imread(templ)
h, w = template.shape[:2]
# 匹配模板
res = cv2.matchTemplate(img, template, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# 计算矩形左边
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
# 画矩形
cv2.rectangle(img, top_left, bottom_right, (0, 0, 255), 5)
# 展示结果
cv2.imshow('img_rgb', img)
cv2.waitKey(0)
pass
if __name__ == '__main__':
print("———————————————————— start ————————————————————\n")
# 图片路径自己设置,下面是我本地的路径,记得替换!!!
one_match('../img/test/guimie_03.jpg', '../img/test/guimie_04.jpg')
print("———————————————————— end ————————————————————\n")
多模板匹配
上面的单模板匹配使用了函数 cv2.minMaxLoc() 输出结果,特点是:只会输出一个匹配系数最大值,无法给出所有匹配区域的位置信息。但是,有些情况下,要搜索的模板图像很有可能在输入图像内出现了多次,这时就需要找出多个匹配结果。
多模板匹配引入了“匹配系数” - threshold,利用数学计算函数 numpy 删选出所有大于 threshold 的图形。
输入: 模板图片 templ → 底图 image:
# _*_coding:utf-8_*_
import cv2 as cv2
import numpy as np
# 多个模板匹配
def more_match(image, templ):
img = cv2.imread(image)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
template = cv2.imread(templ, 0)
h, w = template.shape[:2]
res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
# 取匹配程度大于%90的坐标
threshold = 0.9
# np.where返回的坐标值(x,y)是(h,w),注意h,w的顺序
loc = np.where(res >= threshold)
for pt in zip(*loc[::-1]):
bottom_right = (pt[0] + w, pt[1] + h)
cv2.rectangle(img, pt, bottom_right, (255, 0, 0), 1)
print(pt, bottom_right)
cv2.imshow('img_rgb', img)
cv2.waitKey(0)
pass
if __name__ == '__main__':
print("———————————————————— start ————————————————————\n")
# 图片路径自己设置,下面是我本地的路径,记得替换!!!
more_match('../img/test/zhipai_03.jpg', '../img/test/zhipai_04.jpg')
print("———————————————————— end ————————————————————\n")
————————————————
版权声明:本文为CSDN博主「Java Punk」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_44259720/article/details/127263412