洛谷题单【动态规划4】树与图上的动态规划

P1122 最大子树和

思路

d p [ i ] dp[i] dp[i]表示以 i i i为根节点的最大子树和
对所有 i i i的子结点 k k k,如果 d p [ k ] > 0 dp[k]>0 dp[k]>0 d p [ i ] + = d p [ k ] dp[i]+=dp[k] dp[i]+=dp[k],如果 d p [ k ] < = 0 dp[k]<=0 dp[k]<=0则舍弃掉这一枝

实现

#include <bits/stdc++.h>
#define maxn 16010
using namespace std;
typedef long long ll;
int ans = -2147483647,n;
int dp[maxn]; 
vector<int> G[maxn];
void dfs(int child,int fa)
{
	int sum = G[child].size();
	for(int i=0;i<sum;i++)
	{
		if(G[child][i]!=fa)
		{
			dfs(G[child][i],child);
			if(dp[G[child][i]]>0) dp[child]+=dp[G[child][i]];	
		}
	}
}
int main()
{
	int t1,t2;
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&dp[i]);
	}
	for(int i=1;i<n;i++)
	{
		scanf("%d %d",&t1,&t2);
		G[t1].push_back(t2);
		G[t2].push_back(t1);
	}
//	for(int i=1;i<=n;i++)
//	{
//		for(int j=0;j<G[i].size();j++)
//		{
//			cout<<G[i][j]<<" ";
//		}
//		cout<<endl;
//	}

	dfs(1,0);
	for(int i=1;i<=n;i++)
	{
		//cout<<dp[i]<<endl;
		ans = max(ans,dp[i]); 
	}
	cout<<ans;
	return 0;
}

P1273 有线电视网

自己并没有做出来
参考题解

P1352 没有上司的舞会

思路

树形dp,用 d p 1 [ i ] dp1[i] dp1[i]表示以i为根且 i i i不参加的子树快乐指数最大值,用 d p 2 [ i ] dp2[i] dp2[i]表示以i为根且 i i i参加的子树快乐指数最大值。

实现

#include <bits/stdc++.h>
#define maxn 6005
using namespace std;
typedef long long ll;
int ans,n;
int dp1[maxn]; 
int dp2[maxn];
vector<int> G[maxn];
int a[maxn];
bool flag[maxn];
int root;
void dp(int x)
{
	dp2[x] = a[x];
	for(int i=0;i<G[x].size();i++)
	{
		dp(G[x][i]);
		dp1[x] += max(dp1[G[x][i]],dp2[G[x][i]]);
		dp2[x] += dp1[G[x][i]];
	}
}
int main()
{
	int t1,t2;
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
	}
	for(int i=1;i<n;i++)
	{
		scanf("%d%d",&t1,&t2);
		G[t2].push_back(t1);
		flag[t1] = 1;
	}
	for(int i=1;i<=n;i++) 
	{
		if(!flag[i]) root = i;
	}
	dp(root);
	cout<<max(dp1[root],dp2[root]);
	return 0;
}

P2015 二叉苹果树

思路

d p [ i ] [ j ] dp[i][j] dp[i][j]表示留了 i i i号节点和 i i i下方的 j j j条边时最多可保留的苹果数
枚举 k k k, d p [ i ] [ j ] = m a x ( d p [ i ] [ j ] , d p [ s o n ] [ k ] + d p [ i ] [ j − k − 1 ] + w [ i ] [ s o n ] ) dp[ i ][ j ] = max(dp[ i ][ j ] , dp[ son ][ k ] + dp[ i ][ j-k-1 ] + w[ i ][ son ]) dp[i][j]=max(dp[i][j],dp[son][k]+dp[i][jk1]+w[i][son])

实现

#include<bits/stdc++.h>
using namespace std;
#define maxn 105
int son[maxn][maxn],f[maxn][maxn];
int n,m,w[maxn][maxn],cnt[maxn],vis[maxn];

void dfs(int k)
{
	vis[k]=1;
	for(int i=1;i<=cnt[k];i++)
	{
		int ny=son[k][i];
		if(vis[ny]==1)continue;
		vis[ny]=1;
		dfs(ny);
		for(int j=m;j>=1;j--) 
			for(int g=j-1;g>=0;g--) 
			{
				f[k][j]=max(f[k][j],f[ny][g]+f[k][j-g-1]+w[k][ny]);
			}
	}
	return;
}

int main()
{
	cin>>n>>m;
	for(int i=1;i<n;i++)
	{
		int x,y,z;
		scanf("%d%d%d",&x,&y,&z);
		w[x][y]=w[y][x]=z;
		son[x][++cnt[x]]=y;
		son[y][++cnt[y]]=x;
	}
	dfs(1);
	cout<<f[1][m]<<endl;
}

P2014 [CTSC1997] 选课

思路

和P2015类似, d p [ i ] [ j ] dp[i][j] dp[i][j]表示以 i i i号节点为根且共保留了包括 i i i在内的 j j j个节点时最多拥有的学分
枚举 k k k, d p [ i ] [ j ] = m a x ( d p [ i ] [ j ] , d p [ s o n ] [ k ] + d p [ i ] [ j − k ] ) dp[ i ][ j ] = max(dp[ i ][ j ] , dp[ son ][ k ] + dp[ i ][ j-k ] ) dp[i][j]=max(dp[i][j],dp[son][k]+dp[i][jk])

  • 实现时将0也看成一个节点即可让整个图变成一棵树
  • 需要给m加一

实现

#include<bits/stdc++.h>
using namespace std;
#define maxn 305
vector<int> G[maxn];
int w[maxn];
int n,m;
int f[maxn][maxn];
bool flag[maxn];
void dfs(int k)
{
	for(int i=0;i<G[k].size();i++)
	{
		int ny=G[k][i];
		dfs(ny);
		for(int j=m;j>0;j--) 
			for(int g=1;g<j;g++) 
			{
				f[k][j]=max(f[k][j],f[ny][g]+f[k][j-g]);
			}
	}
	return;
}

int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		int x,y,z;
		scanf("%d%d",&x,&y);
		f[i][1]=y;
		G[x].push_back(i);
	}
	++m;
	dfs(0);
	cout<<f[0][m]<<endl;
}

P1613 跑路

思路

f [ i ] [ j ] [ k ] = 1 f[i][j][k]=1 f[i][j][k]=1表示 i i i j j j之间有一条长度为 2 k 2^k 2k的路径,初始时对于所有连通的 i i i j j j f [ i ] [ j ] [ 0 ] = 1 , f [ i ] [ j ] [ 1 ] = 1 f[i][j][0]=1,f[i][j][1]=1 f[i][j][0]=1,f[i][j][1]=1当且仅当存在 k k k使得 f [ i ] [ k ] [ 0 ] = = 1 f[i][k][0]==1 f[i][k][0]==1 f [ k ] [ j ] [ 0 ] = = 1 f[k][j][0]==1 f[k][j][0]==1
最优解路径长度<=maxlongint,所以处理到 f [ i ] [ j ] [ 64 ] f[i][j][64] f[i][j][64]即可,若 i i i j j j之间有一条长度为 2 k 2^k 2k的路径,则将 d i s [ i ] [ j ] dis[i][j] dis[i][j]设为1,最后跑一个最短路。

实现

#include<bits/stdc++.h>
using namespace std;
#define maxn 305
const int N=55;
const int K=70;
int f[N][N][K],dis[N][N],n,m;
int main()
{
	int s,t;
    cin>>n>>m;
    memset(dis,0x3f,sizeof dis);
    for(int i=1;i<=m;i++)
    {
    	scanf("%d%d",&s,&t);
        f[s][t][0]=1;
        dis[s][t]=1;
    }
    
    for(int o=1;o<=64;o++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                for(int k=1;k<=n;k++)
                    if(f[j][i][o-1]==true and f[i][k][o-1]==true)
                    {
                        f[j][k][o]=true;
                        dis[j][k]=1;
                    }
                
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            for(int k=1;k<=n;k++)
                dis[j][k]=min(dis[j][k],dis[j][i]+dis[i][k]);
    
    printf("%d",dis[1][n]);
    return 0;
}

P1040 [NOIP2003 提高组] 加分二叉树

思路

f [ i ] [ j ] f[i][j] f[i][j]为节点 i i i j j j的最大得分,答案即为 f [ 1 ] [ n ] f[1][n] f[1][n]。对于二叉树的中序遍历,任意选定一个点,左边的就是左子树,右边的就是右子树,可以很方便的做区间dp。
枚举 k k k:
f [ i ] [ j ] = f [ i ] [ k − 1 ] ∗ f [ k + 1 ] [ j ] + f [ k ] [ k ] f[i][j]=f[i][k-1]*f[k+1][j]+f[k][k] f[i][j]=f[i][k1]f[k+1][j]+f[k][k]
使得 f [ i ] [ j ] f[i][j] f[i][j]最大的 k k k值保存下来, r o o t [ i ] [ j ] = k root[i][j]=k root[i][j]=k
递归输出区间[l,r]的前序序列:
r o o t [ l , r ] root[l,r] root[l,r],区间 [ l , r o o t [ l , r ] − 1 ] [l,root[l,r]-1] [l,root[l,r]1]的前序序列,区间 [ r o o t [ l , r ] + 1 , r ] [root[l,r]+1,r] [root[l,r]+1,r]的前序序列

实现

来自 洛谷题解区

#include<iostream>
#include<cstdio>
using namespace std;
int n,v[39],f[47][47],i,j,k,root[49][49];
void print(int l,int r){
    if(l>r)return;
    if(l==r){printf("%d ",l);return;}
    printf("%d ",root[l][r]);
    print(l,root[l][r]-1);
    print(root[l][r]+1,r);
}
int main() {
    scanf("%d",&n);
    for( i=1; i<=n; i++) scanf("%d",&v[i]);
    for(i=1; i<=n; i++) {f[i][i]=v[i];f[i][i-1]=1;}
    for(i=n; i>=1; i--)
        for(j=i+1; j<=n; j++)
            for(k=i; k<=j; k++) {
                if(f[i][j]<(f[i][k-1]*f[k+1][j]+f[k][k])) {
                    f[i][j]=f[i][k-1]*f[k+1][j]+f[k][k];
                    root[i][j]=k;
                }
            }
    printf("%d\n",f[1][n]);
    print(1,n);
    return 0;
}

欢迎指正-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值