[机器学习] 最大熵模型

本文介绍了最大熵模型的基本原理,强调在满足约束条件下,熵最大的模型是最优的。详细阐述了最大熵模型的定义,通过条件熵与联合熵的关系解释其信息熵最大化的目标,并探讨了最大熵模型的学习过程,包括等式约束优化和拉格朗日乘子法的应用。
摘要由CSDN通过智能技术生成

目录

一、最大熵原理

二、最大熵模型

2.1 条件熵=联合熵-熵:H(Y|X)=H(X,Y)-H(X)

2.2 最大熵模型的定义

2.3 最大熵模型的学习


一、最大熵原理

学习概率模型时,在所有可能的概率模型中,熵最大的模型是最好的模型。

最大熵原理认为,首先必须满足已有事实(约束条件),在没有更多信息的情况下,那些不确定的部分都是“等可能的”。 其中,熵可以量化“等可能”(等概率,熵最大)。

二、最大熵模型

最大熵原理是统计学习的一般原理,应用到分类得到最大熵模型。 

假设我们的模型是条件概率P(y|x),最大熵模型最大化模型的信息熵,即目标函数为max H(p)。 

再根据“模型尽可能的符合经验分布”,得到约束条件Ep=Ep~(特征/指示函数 关于联合经验分布的期望=关于边缘分布和条件概率的期望),建立等式约束优化问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值