【机器学习】6 ——最大熵模型

机器学习6——最大熵模型

最大熵(maximum entropy)模型

选择熵最大的概率模型
熵是衡量不确定性的,后面决策树也会用到

熵单独写一个吧,后面链接放在这里 -> 香农说,要有熵,于是便有了熵

离散随机变量:X,概率分布P(X),熵:
H ( P ) = − ∑ x P ( x ) l o g P ( x ) H(P)=-\sum_{x}^{} P(x)logP(x) H(P)=xP(x)logP(x)
0 ≤ H ( P ) ≤ l o g ∣ X ∣ 0\le H(P)\le log\left | X\right | 0H(P)logX

∣ X ∣ \left | X\right | X是随机变量取值个数


模型

  • 输入X,以概率P(Y|X)输出Y

在这里插入图片描述

  • 涉及到概率,有数据一般就是频率近似概率的思想,大数定律的天下,经验分布:

在这里插入图片描述

  • 这里给了特征函数f(x,y),其实就是指示函数,符合条件(发生咯)取1,不符合取0
  • 为输入 x 和输出 y 组合提供特定的特征值。
    – 第一个是组合(x,y)关于经验分布的期望

在这里插入图片描述
那最大熵模型就

在这里插入图片描述

模型学习(估计参数)

还是转化成优化问题:

在这里插入图片描述
拉格朗日乘子法登场

在这里插入图片描述
熟悉的求导环节

在这里插入图片描述
最后这个Pw就是模型的形式,确定参数(特征权重 )wi,使得模型的预测分布尽可能地符合训练数据的统计特征。参数(权值求解)

在这里插入图片描述
这个最大熵和最大似然是等价的

模型评价

优点

  • 灵活性:最大熵模型不对数据分布做强假设,只根据已有的约束条件确定概率分布,因此非常灵活。
  • 适用性广:适用于各种类型的数据,如文本数据、图像数据等。
  • 理论基础扎实:基于信息论中的熵概念,具有较强的理论支持

缺点

  • 计算复杂:训练过程中需要计算规范化因子 ,在大规模数据上可能计算开销较大。
  • 特征选择依赖:模型性能依赖于特征函数的选择和设计,特征选择不当可能影响模型的表现。

应用

自然语言处理(NLP)

  • 文本分类:最大熵模型用于将文本分类到不同类别,如垃圾邮件过滤。
  • 命名实体识别:识别文本中的命名实体(如人名、地名)及其类型。
  • 词性标注:标注文本中的每个词的词性,如名词、动词等。

计算生物学

  • 基因序列分析:用于预测基因序列中的功能区域。
  • 蛋白质结构预测:预测蛋白质的结构特征和功能。

模式识别

  • 图像分类:用于对图像进行分类,例如识别手写数字或人脸识别。

  • 语音识别:用于将语音信号转换为文本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_43507078

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值