机器学习6——最大熵模型
最大熵(maximum entropy)模型
选择熵最大的概率模型
熵是衡量不确定性的,后面决策树也会用到
熵单独写一个吧,后面链接放在这里 -> 香农说,要有熵,于是便有了熵
离散随机变量:X,概率分布P(X),熵:
H ( P ) = − ∑ x P ( x ) l o g P ( x ) H(P)=-\sum_{x}^{} P(x)logP(x) H(P)=
选择熵最大的概率模型
熵是衡量不确定性的,后面决策树也会用到
熵单独写一个吧,后面链接放在这里 -> 香农说,要有熵,于是便有了熵
离散随机变量:X,概率分布P(X),熵:
H ( P ) = − ∑ x P ( x ) l o g P ( x ) H(P)=-\sum_{x}^{} P(x)logP(x) H(P)=